
Type-Correct Changes — A Safe Approach to

Version Control Implementation

Jason Dagit

November 13, 2010

Contents

1 Introduction 4
1.1 Background . 5

1.1.1 Patch Theory . 5
1.1.2 Haskell’s Type System . 5

1.2 Motivation . 5
1.3 Structure of this document . 6

2 Related Work 7
2.1 Version Control Systems . 7

2.1.1 Commonly Supported Features 7
2.1.2 Centralized and Decentralized Version Control 8

2.2 Type Level Proofs . 8
2.2.1 Haskell . 9
2.2.2 Non-Haskell . 13

3 Data Model and Invariants 15
3.1 Elements of Patch Theory . 15
3.2 Commute . 16

3.2.1 Example . 17
3.2.2 Abstract Interface . 21

3.3 Inverse Patches . 22
3.4 Equality . 23
3.5 Merge . 23
3.6 Summary . 25

4 Checked Invariants 26
4.1 Sealed Types . 26
4.2 Witness Types . 27
4.3 Phantom Types . 27
4.4 Example . 28
4.5 Patch Representation . 29
4.6 Directed Types . 31

4.6.1 Directed Pairs . 31
4.6.2 Forward Lists . 32

2

CONTENTS 3

4.7 Expressing Commutation . 32
4.8 Patch Sequences . 33
4.9 Patch Merge . 34
4.10 Patch Equality . 35
4.11 Summary . 35

5 Discussion 37
5.1 Incremental Approach . 37
5.2 Difficulties . 39

5.2.1 Intentional Context Coercion 39
5.2.2 Unsound Equality Examples 41
5.2.3 Improving Context . 43
5.2.4 Type Checking . 44

5.3 Real-World Improvements . 45
5.3.1 Detection of Invalid Patch Sequence Manipulations 45
5.3.2 Safe and General Functions 46
5.3.3 Detection of Defective Functions 47
5.3.4 Identification of Redundant Functions 47
5.3.5 Writing New Code is Safer 48

6 Conclusion 49

A Existentially Quantified Types 55

B Generalized Algebraic Data Types (GADTs) 57

C Directed Type Examples 59
C.1 Functions . 59
C.2 Filtering . 61
C.3 Zipping . 61
C.4 Standard Operations . 63

D Program Coverage 65

Chapter 1

Introduction

Version control systems require a high degree of robustness as users trust them
to safeguard their data over the life cycle of software projects. Corruption in
repository data, such as the history of changes, can lead to wasted time and
user frustration. Worse yet is the possibility of a bug which constructs invalid
versions of the user’s data. When the data under version control is source code
this can lead to build failures or forms of corruption that go unnoticed until it
poses a problem.

Software engineers have many tools to help write software applications.
Many of these tools exist to tackle the challenge of writing correct software.
Testing continues to be a popular approach to this challenge but testing is not
usually enough to prove correctness. Instead, software engineers use testing to
gain confidence that the tested program will behave as intended in most uses.

When testing is not sufficient, formal methods may be used to prove parts
of the program correct. Often formal methods are applied in only the core of
applications due to the high labor costs needed to use them effectively. Another
approach to reducing the high cost of formal methods is to use an automated
method such as a proof assistant. Proof assistants are only available in special-
ized domains, such as research programming languages. This means that many
mainstream programming environments lack automated proof tools.

Given the importance of correctness for version control systems, we would
like to eliminate as many bugs as possible from the Open Source version control
system Darcs [Rou09a]. We examine the data model used by Darcs and discuss
a number of invariants that must be maintained to avoid data corruption.

Darcs is implemented in the programming language Haskell, which gives us
an opportunity to apply modern innovations in Programming Language research
to a real-world software application. Our approach shows that the type system
of the Haskell programming language together with a novel combination of lan-
guage extensions, implemented by the Glasgow Haskell Compiler (GHC), can
be used as a light-weight alternative to a proof assistant. We show that entire
classes of bugs can be eliminated at compile time using our approach.

Finally we examine the impact of our techniques on the Darcs codebase

4

1.1. BACKGROUND 5

and the challenges that arise when applying these techniques to an existing
real-world application.

1.1 Background

This document shows how to encode specific invariants into types in the Haskell
programming language. Although program invariants may seem unrelated to
types, we use properties of Haskell’s strong static type checking to gain static
guarantees about these invariants.

1.1.1 Patch Theory

The data model used and pioneered by Darcs is known as Patch Theory [Rou09b],
discovered by David Roundy to solve the problem of communicating changes in
a distributed fashion between contributors. Patch Theory remains distinct in
that it allows users to think of their repositories as unordered collections of
changes. More details can be found in Chapter 3.

1.1.2 Haskell’s Type System

We assume the reader has a basic familiarity with functional programming and
the Haskell language specifically. For more details about the language features
that will be discussed in this document please see Section 2.2 and Appendices A
and B.

Haskell’s type system is based on Hindly-Milner type checking [Pey03]. The
GHC implementation of Haskell uses a modified version of the Damas-Milner
type checking algorithm [VWP06]. In fact, GHC contains many extensions
compared to the language specification for Haskell [Pey03] and it is no coin-
cidence that GHC is used as the compiler for Darcs. Many of the extensions
implemented by GHC are of great value for real-world Haskell programming.

1.2 Motivation

The use of version control systems (VCS) seem to be a common practice for
software projects these days as most projects use some form of version control.
Example version control systems include Subversion (SVN) [Tig09], Concurrent
Versions System (CVS) [Fre09], Git [Tor09], Darcs [Rou09a], BitKeeper [Bit09],
Monotone [Mon09], Visual SourceSafe [Mic09], and many others.

A VCS plays a support role in a project. That is, the VCS used by a team
of software developers supports the primary task of software development. For
this reason it is important that the VCS be reliable and robust, otherwise the
software developers could lose time dealing with their tools instead of working
on their primary task of software development.

6 CHAPTER 1. INTRODUCTION

Robustness has always been important for Darcs and it has motivated the
Darcs project to try new things, such as moving the implementation language
from C++ to Haskell as explained by Roundy [Sto05]:

It is a little-known fact that the first implementation of Darcs was
actually in C++. However, after working on it for a while, I had an
essentially solid mass of bugs, which was very hard to track down.

While Darcs has a test suite that continues to grow in size and compre-
hensiveness, it does not provide a total solution for ensuring the level of qual-
ity assurance that users demand. As an illustration of this point, we include
code coverage statistics generated by the Haskell Program Coverage (HPC)
toolkit [GR07] in Appendix D. The number of bugs in Darcs, despite testing, is
a strong motivating factor in our decision to incorporate more proof techniques
in our quality assurance process.

1.3 Structure of this document

This document introduces the related work in Chapter 2 in the areas of au-
tomated invariant checking and encoding invariants in Haskell programs. In
Chapter 3 we will give the necessary background for understanding several key
invariants of Darcs. The tools and abstractions we use to represent these in-
variants, along with real examples are given in Chapter 4. Our analysis of the
work, with discussion is found in Chapter 5. Finally we give a closing statement
in Chapter 6.

Chapter 2

Related Work

In this chapter, we present work related to this thesis. A brief survey of the
version control landscape is given in Section 2.1. An overview of type-based
proofs as well as proof-carrying types can be found in Section 2.2.

2.1 Version Control Systems

Version control systems (VCS) are used by many software developers, projects
and organizations. The primary feature offered by VCS software is the ability to
track modifications to a collection of documents, usually program source code.
Typically users are allowed to make their modifications independently and then
share the modifications. Common VCS operations are covered in Section 2.1.1.
A common classification among VCS is whether the modifications are shared
in a distributed or centralized fashion. This distinction and where Darcs fits is
covered in Section 2.1.2.

2.1.1 Commonly Supported Features

Every VCS has a notion of modification although different terminology is often
used such as change, patch, or revision. The VCS stores a collection of docu-
ments along with the history of modifications in what is known as a repository.

The first step for using a VCS is usually to get a copy of a repository where
the user can make modifications. Once modifications have been made, the VCS
requires the user to record, or commit, the modifications. Doing so creates an
entry in the history that contains the changes and usually a description entered
by the user. After making and recording modifications users will often need to
share their work with others who have a copy of the repository. The different
ways of sharing are covered in the next section.

An important feature of most VCS is that of branching and merging. Cre-
ating a branch means making a copy of the repository which diverges from
the original repository. In a software development project this might be done

7

8 CHAPTER 2. RELATED WORK

to facilitate the design and development of an experimental new feature while
applying bug fixes to a stable version. Following this example, once the new
feature is complete we would like to merge the two repositories so that we are
left with one repository with both the completed new feature and the bug fixes
to existing functionality. How branching and merging function also depends on
the distinction between centralized and decentralized version control.

2.1.2 Centralized and Decentralized Version Control

How to share the changes, the ways in which they can be shared, and the order
that they can be shared varies between VCS. Many VCS require that there is a
central repository which collects all the changes and users connect to it to share
and receive changes. Some VCS allow changes to be shared directly between
copies of the repository in a decentralized fashion.

Well known examples of centralized VCS include, Subversion (SVN) [Tig09],
Concurrent Versions System (CVS) [Fre09], Perforce [Per09], and Visual Source-
Safe [Mic09]. Each of these VCS operate in client-server manner. The central
repository is the server and each user has a client repository which communicates
only with the central repository.

Decentralized, also known as distributed, VCS allow repositories to commu-
nicate directly removing the client and server distinction found in centralized
VCS. Well known examples of decentralized VCS include, Darcs [Rou09a], Mer-
curial [Sel09], Git [Tor09], and Bazaar [Can09].

Modifications made with a centralized VCS may be stored in the order that
they are committed to the central repository. This provides a natural linear
progression of modifications and typically forces an implicit dependency be-
tween the modifications. Generally, new modifications must be made on top
of all previous modifications. For example with SVN, users typically must up-
date their local repository with modifications from the central repository before
committing new changes.

With decentralized VCS the task of sharing changes becomes more complex
as it is often equivalent to merging two repositories. For example, in the Darcs
data model each copy of a repository is considered a branch and every time
patches are shared it is equivalent to a merge in the SVN data model. In
fact, these spontaneous branches set Darcs apart even within the category of
decentralized VCS. Other decentralized VCS, such as Git, store modifications in
a specific order whereas Darcs allows the order of modifications to be reordered
according to the rules of Patch Theory discussed in Chapter 3.

2.2 Type Level Proofs

Although our implementation work is done inside of Darcs, our focus is not on
the VCS aspects. Instead we are focused on using the type system as theorem
prover and proof assistant. We discuss Haskell based type level proofs in Sec-
tion 2.2.1. Briefly we discuss type system based proofs in mainstream languages

2.2. TYPE LEVEL PROOFS 9

and dependently typed languages in Section 2.2.2.

2.2.1 Haskell

Here we focus on proofs and proof techniques based in Haskell’s type system.
Much of the research in Haskell that uses the type system for proofs centers
around the use of type classes. This may be due in part to how long type
classes have been available in Haskell and their standardization. More recent
work in this area has demonstrated the power of Generalized Algebraic Data
Types (GADTs). Appendix B contains a brief overview of GADTs and examples
involving GADTs can be found in Chapter 4.

Language Features

The Haskell programming language [Pey03] specifies Hindley-Milner type infer-
ence and checking. Hindley-Milner type inference combined with type classes,
nested types and recursive types gives Haskell programmers a plethora of in-
teresting and useful idioms and techniques. Some of the techniques and idioms
discussed in the research allow the Haskell type checker to serve as a proof
assistant at compile time.

In addition to the features above, we focus on several other features sup-
ported by the Haskell compiler GHC [GHC09c]:

� Generalized Algebraic Data Types (GADTs), developed by Xi et al, Jones
et al, and Cheney and Hinze [XCC03, PVWW06, CH03];

� Existentially quantified types [LO94], commonly referred to as existential
types, explained in Appendix A, and;

� Phantom Types [LM99].

We have two main uses for existential types. First, we borrow the idea of
branding [KS07] when we need a type that is distinct and; second, to express
certain type relations in our data types without exposing the exact types in the
type of the data structure.

Both existentially quantified types and phantom types are implied by using
GADTs, but our usage of them is important enough to warrant introducing
them separately.

Some authors, such as Baars and Swierstra, have used the term witness type
to refer to a type that serves as a witness of a proof. For example the type could
represent a proof that two types are equal [BS02]. We adopt this terminology
in our work.

Witness types are chiefly useful to us as a means of ensuring certain invari-
ants are preserved. In the case of Darcs we would like to be able to change the
semantics, fix bugs or refactor the code and always know that the properties of
Patch Theory, such as those discussed in Chapter 3, have been respected.

Peyton-Jones et al [PVWS07] extended the type system used by GHC to
handle arbitrary rank, which leads to so called “sexy types.” Sexy types include

10 CHAPTER 2. RELATED WORK

higher rank polymorphism and existential types. Additionally, sexy types give
us precisely the power we need to express run-time invariants through the type
system as demonstrated by Shan [Sha04]:

. . . skillful use of sexy types can often turn what is usually regarded
as a run-time invariant into a compile-time check. To implement
such checks is to reify dynamic properties of values as refined distinc-
tions between types. These distinctions in turn increase the degree
of heterogeneity among types in the program.

Hinze shows that higher rank types can also be used to enforce a wide variety
of invariants in data types [Hin01].

Using existential types Kahrs shows us how to encode the invariants of red-
black trees [Kah01]. The existential types are used in the data type declaration
to control unification of phantom types. We use a similar means to control
unification of phantom types in our implementation. As Kahrs mentions, using
phantom types in this way has the advantage that it can be removed later, once
the code is known to preserve invariants and the phantom types add no run-time
cost.

Type Class Based

Using type classes it is possible to implement a statically checked run-time test
for type equality using witness types as detailed by Baars and Swierstra [BS02].
Implementing type equality this way does have one draw back as demonstrated
by Kiselyov [Kis09], namely it is possible to weaken the type system through
malicious type class instances. In Section 5.2.3, we discuss a similar problem
that threatens the context equality that we use in the Darcs implementation.

Type classes, especially when combined with functional dependencies, allow
for computations in the type system as explained by Hallgren [Hal01]. Any
purely functional computation that terminates appears to be possible at the
type level. For example, basic arithmetic on type level natural numbers is
relatively easy to express. One drawback to this variety of type level proof
is that by enabling this level of computation in the type system we lose the
property that type checking will always terminate.

Kiselyov and Shan [KS04] provide a powerful example of how Haskell’s type
classes can be used to turn values into types and back again. These authors
give a way to reify any value that can be serialized into the type system. A
major drawback of using this approach is that it adds run-time overhead. Con-
verting back and forth between types and values requires processing overhead
and there is also the overhead of passing run-time data for each type. The
run-time overhead can be proportional to the “size” of the type [McB02]. Our
implementation is already burdened by performance issues and so we seek to
avoid adding any additional run-time overhead.

Silva and Visser [SV06] give another great example of Haskell programmers
reaching for more static safety by exploiting the types system and HList [KLS04].
As Silva and Visser describe their work:

2.2. TYPE LEVEL PROOFS 11

We explain how type-level programming can be exploited to define
a strongly-typed model of relational databases and operations on
them. In particular, we present a strongly typed embedding of a
significant subset of SQL in Haskell. In this model, meta-data is
represented by type-level entities that guard the semantic correctness
of database operations at compile time.

By using HList, values with heterogeneous types may be stored together in a
record, or list, of arbitrary size. While this is similar to our Directed Lists, see
Section 4.6, we would like to place more constraints on our data types such as
Hinze [Hin01] does and also not exposing the intermediate types of the elements
in our directed types.

The libraries Dimensionalized Numbers [Den09] and Dimensional [Buc09]
both take the approach of exposing extra information to the type system to
achieve correct unit manipulations. In both of these cases the correctness the
authors want to model is that arithmetic operations should respect the physical
units involved.

GADT Based

Eaton [Eat06] gives a clever way to expose matrix dimensionality to the type
system so that only operations which respect the dimensions of arrays and
matrices statically are allowed. This approach is interesting because it is not
unlike our own and yet only uses GADTs incidentally. Meaning, it is not a core
requirement for their approach. As the author says the technique is to “expose
certain properties of operands to a type system, so that their consistency could
be statically verified by a type checker, then we would be able to catch many
common errors at compile time.”

The presented approach uses type classes and the type reflection technique
presented by Kiselyov and Shan [KS04]. Similar to our experiences, this author
also points out that doing so increases the type signatures in an unpleasant way.
A major difference between our implementation and that of Eaton is the use of
functional dependencies [Jon00]. Functional dependencies allow the program-
mer to place constraints on the types used in a type class. If our approach relied
on type classes we would probably use functional dependencies as well. A minor
difference between our approaches is that while we use data types with existen-
tially quantified types as wrappers so that we may have existential types result
from functions Eaton prefers to use CPS transformation. This transformation
leads to equivalent types [Sha04, Eat06]. Eaton also notices how type checking
is now so difficult as to be a burden to the programmer and comments that
data flow analysis may be able to improve type check error messages. Such an
improvement by any means would be very welcome.

Greif [Gre08] applies the same data declarations that we use for directed
lists, Section 4.6, to implement Thrists, or type threaded lists. Although this
work is unpublished, according to the author it is inspired by the brainstorming
session at Haskell’05 workshop in Tallinn. This session is where our directed

12 CHAPTER 2. RELATED WORK

lists were born. Greif provides a library for Thrists in both Ωmega and Haskell,
with several example applications including parsers and interpreters.

Faking Dependent Types

Although we do not use a dependently typed language for our implementation,
we do approximate, or simulate, dependent typing within Haskell to achieve
some of our goals. McKinna [McK06] explains the benefits of dependently typed
programming:

Type systems without dependency on dynamic data tend to sat-
isfy the replacement property—any subexpression of a well typed
expression can be replaced by an alternative subexpression of the
same type in the same scope, and the whole will remain well typed.
For example, in Java or Haskell, you can always swap the then and
else branches of conditionals and nothing will go wrong—nothing of
any static significance, anyway. The simplifying assumption is that
within any given type, one value is as good as another. These type
systems have no means to express the way that different data mean
different things, and should be treated accordingly in different ways.
That is why dependent types matter.

This observation exactly characterizes why Darcs became fragile and why we
seek to simulate dependent typing. Replacing patches in, concatenating and
rearranging patch sequences was always statically valid even when it would
result in corrupt repositories. For this reason we sought out techniques that
would give us the benefits of dependent typing in Haskell.

Using type level numerals, Fridlender and Indrika [FI00] show a simple way
to work around the lack of dependent types in Haskell. The main example
given allows us to make a version of the standard Haskell function zipWith,
which is referred to as zipWithN, that is type indexed by a type level numeral.
The numeral represents the number of parameter lists passed to zipWithN. This
approach is representative of simulating dependent typing with Haskell. One
type is created for each value, in this case type level numerals. To simulate the
values inhabiting a type we can make each type an instance of the same type
class. Thus the values correspond to Haskell types and the types correspond to
Haskell type classes.

McBride [McB02] explores the simulation of dependent typing in Haskell.
This paper explains various tricks to simulate dependent typing and how they
are related. It also clearly explains how type classes allow the programmer
to simulate some type families. He also comments on the limitations of type
inference and what can be accurately encoded when using nested types such
as those used by Okasaki [Oka99]. McBride warns us that run-time overhead
of type class heavy techniques may be proportional to the size of the type
signatures. In the GHC implementation this results from implicit passing of
type dictionaries for functions that rely on type classes.

2.2. TYPE LEVEL PROOFS 13

Guillemette and Monnier [GM08] found that it was possible to represent
subset and superset relationships in the type system using GADTs. This also
required a way to implement type equality as a run-time test. Their tech-
niques are very similar to ours even though the domain is very different, a
type-preserving compiler. They use type level Peano numbers to represent de
Bruijn indices.

Kiselyov and Shan [KS07] tag, or brand, values with types that represent
certain capabilities. For example, by creating a new list datatype where the type
of the list is parametrized by a brand we can statically enforce non-emptiness
of lists. The brand is part of the type of the list and acts as a proof of a
capability such as whether the list is empty or non-empty. The work done here
is in OCaml but applies equally well to Haskell and can be used even without
dependent typing, although this requires that we use a trusted kernel of code
which may do run-time checks to generate the correct branding. Once we have
the branding in place the type system can do the verification, thus we can
restrict our intensive verification to just the trusted kernel. This is essentially
the approach we have taken for directed lists. This work is also similar to the
examples of dependent typing given by Xi [XP98]. Xi uses restricted dependent
types to remove array bounds checking.

By using “nested types, polymorphic recursion, higher-order kinds, and rank-
2 polymorphism,” Okasaki [Oka99] is able to encode vector and matrix dimen-
sions into types. This encoding ensures that matrix and vector operations can
be statically checked for correctness.

2.2.2 Non-Haskell

Proving properties and carrying the proofs with types is not limited to Haskell.
Skalka and Smith [SS00] propose a type system for statically enforcing security
using the JVM security model. The type system carries proofs about the code
as it is compiled. For this to work static type inference is required, this means
that their static security does not work without a modified Java compiler.

Java is not the only mainstream programming language that is receiving
attention from type based proofs. Kennedy and Russo [KR05] have found a way
to bring the power of GADTs to C# and Java. Hopefully in the future many of
the approaches discussed here will apply in mainstream languages. Before we
can freely use GADTs in C# the compiler would need to be augmented with
the special type checking rules described.

Xi and Scott [XS99] make a very good survey of work done in dependent
typing, give examples where it helps and explain why it is an important subject.

One example of using language features similar to GADTs arises in a depen-
dently typed variant of ML known as Dependent ML. Chen and Xi [CX03] use
Dependent ML to implement type correct program transformations.

Sheard [She05] explains, with examples, a Haskell-like language known as
Ωmega. Ωmega has GADTs but unlike Haskell it offers strict evaluation and
features designed to ease using the type system for proofs. Unfortunately we
could not use Ωmega without a substantial rewrite of Darcs. It also not clear

14 CHAPTER 2. RELATED WORK

that Ωmega is ready for real-world use. We hope that the techniques we demon-
strate help answer a question posed by the author about the way in which other
features such as rank-n polymorphism magnify the benefit of GADTs.

Chapter 3

Data Model and Invariants

Now we turn to establishing the theory underlying Darcs. We assume the reader
has basic familiarity with the use of version control systems. Here we describe
the fundamentals of Patch Theory [Rou09c] as it relates to version control. Not
all of Patch Theory has been made rigorous and precise at this time although
Roundy has made several presentations on Darcs that include discussions of
Patch Theory [Rou06a, Rou06b, Rou08]. We begin with some definitions and
then discuss several properties of patch manipulation.

3.1 Elements of Patch Theory

In this section we make precise terminology that is commonly used in the Darcs
community.

Patch Theory is designed to allow users to independently change their data
and then share those changes. A patch is a way of recording, storing and
communicating changes. Before we give a precise definition of patch we define
some of the important concepts in Patch Theory.

Definition 3.1.1. A repository consists of a sequence of patches and a work-
ing copy.

The sequence of patches in the repository represents a set of changes. We
want the user to work with patches in such a way that the set of changes define
the exact contents of the repository and allow the user to think in terms of
sharing changes between repositories. For example, we would like for a merge
of two repositories to be simply the union of their sets of changes.

Each repository may have several states. For example, the state that results
from applying all of the patches in the repository is called the pristine state.

Definition 3.1.2. A repository state is a collection of directories, files and the
contents of those files.

15

16 CHAPTER 3. DATA MODEL AND INVARIANTS

We give a special name to the pristine state as it gives us a convenient way
to discuss the effect of applying patches while ignoring any changes that have
not yet been recorded by the user.

The working copy of the repository is where users do their work between
version control operations. In Darcs the working copy is a directory storing
the user’s files and data as the user currently chooses to see it and work with
it. Example operations involving patches are removing patches, recording new
patches or applying patches from a different repository and doing so will result
in a new working copy corresponding to a new state.

Definition 3.1.3. A context is a sequence of patches that can be applied to
the empty state. The empty state refers to an empty collection of directories
and files.

We can now give a more precise definition of patch.

Definition 3.1.4. A patch is a concrete representation of a change made to
the state of a repository. Each patch is a transformation on repository state,
and must be an invertible transformation. Each patch also depends on a context
as defined in Definition 3.1.3.

A few example patch types include, change to file contents, renaming a file,
as well as file additions and deletions.

We will use bold capital letters (e.g. A, B) to refer to patches.
Each patch has exactly two contexts, the context required to apply the

patch, the pre-context, and the context that results from applying the patch,
the post-context.

Definition 3.1.5. The pre-context of a patch is the context that exists prior
to the patch and is required to apply the patch. Similarly the post-context of
a patch is the context that results from appending the patch to the pre-context.

Lowercase italic letters will refer to contexts, and will be placed in the su-
perscript position in order to describe the pre- and post-contexts of a patch,
as in oAa. For example, if the repository has a context of o and the user then
edits one file and records a new patch A, then the context might then be a.
Thus, the user has created a patch with pre-context o and post-context a. To
denote this we would write oAa, where a is equal to the context o with patch
A appended to it.

A repository might contain two patches, oAa and aBb, in which case we
could put them in a sequence and simply write, oAaBb. Note that since the
post-context of A matches the pre-context of B we only write the context a
once. Often the contexts may be understood and are omitted, as in AB.

3.2 Commute

When the result of composing two functions is the same regardless of composi-
tion order, the functions are said to be commutative. Since our patches contain

3.2. COMMUTE 17

a transformation of state, we would like to commute patches. Commutation of
patches will give us a natural way to reorder sequences of patches and a way
to implement merging of patches. If we have two invertible transformations of
state, T1 and T2 such that

T1 ◦ T2 = T2 ◦ T1,

then we say that the functions T1 and T2 are commutative functions.
We must note that above, T1 and T2 are not patches because we have not

associated pre- and post-contexts to them. What we mean is that we have two
functions with domains and ranges such that they can be composed either way
and the resulting transformation of state is the same.

To construct patches from T1 and T2 we associate with each a pre-context.
Suppose the patch A was created from a repository of context o, from the
transformation T1, then let A have pre-context o and let the resulting post-
context be a. That is, we have constructed a patch oAa. Similarly, suppose the
transformation T2 is then applied and a patch is created with pre-context a and
post-context b, let this patch be aBb. So far we have constructed oAa and aBb

from T1 and T2 in such a way that oAa and aBb are restricted versions of T1

and T2. That is, oAa and aBb have the same effect on state but may only be
applied or composed in their respective pre- and post-contexts.

By construction, T1 and T2 are commutative functions and now we investi-
gate what happens when we commute patches by exploring an example.

3.2.1 Example

To understand the difference between commuting functions and commuting
patches, we will work through an example involving file renames and modi-
fications to the contents of those files. This example shows how patches are
transformed by commutation.

Suppose we have a repository with two specific files named X and Y . We
could then define the following transformations of state, which simply rename
the files:

� rename Y to Z

� rename X to Y

� rename Z to X

Suppose also, that we make an edit to X and an edit to Y .
Let us name these transformations in general as follows,

R(x, y) = rename x to y

E1(x) = fixed but arbitrary edit to file x

E2(x) = fixed but arbitrary edit, different from E1(x), to file x.

18 CHAPTER 3. DATA MODEL AND INVARIANTS

Note that in general E1(x) and E2(x) depend on the specific contents of the
file x.

Using our files X and Y , we see that E1(X) and E2(Y) could be applied
to the repository in either order. In other words, both E1(X) ◦ E2(Y) and
E2(Y) ◦ E1(X) transform the repository in exactly the same way. This follows
from the contents of X and Y being independent of each other.

Here we will introduce a new patch notation in this section only to make our
example commutes more clear. In later sections we will switch back to our more
abstract patch notation. Since each patch corresponds to a transformation of
state, say T , with specific pre-context a and post-context b, we will denote this:
a[[T]]b

As before we will omit the contexts when it is understood or unimportant.
As we will see later, each commute introduces a new pair of patches and this new
notation frees us from the task of distinctly naming each patch. This notation
also allows us to focus on the state transformation and contexts of the patch.

Our first example uses the patch sequence, o[[E1(X)]]a[[R(X, Y)]]b. We are
assuming that the context o ensures we have a file X but that no file named Y
exists. This sequence of patches edits file X and then renames X to Y .

If we step back and view the above sequence of patches as a composition
of transformations, R(X, Y) ◦ E1(X)1, then we see that these transformations
are not commutative because it does not make sense to edit the file X after
renaming X to Y . The reason is simple, the file X would no longer exist when
we try to apply the edit transformation.

Instead of trying to commute E1(X) with R(X, Y), we could consider E1(Y)◦
R(X, Y). We arrive at this composition by observing that once X has been re-
named to Y we would like to apply our edits to the file Y instead of X. This
new composition of transformations would give us the same state as the original
composition but with the order of operations reversed. We can apply this idea
to swapping the order of patches as well.

Now we swap the order of the patches and reason about the effect on the
transformations stored inside the patches,

��
o[[E1(X)]]a[[R(X, Y)]]bXX → o[[R(q, r)]]c[[E1(s)]]d,

where q, r, and s are placeholders that we will reason about now. A first guess
at the values for q, r, and s might be q = X, r = Y , and s = X, but this does
not take into consideration the reordering of the operations. When we commute
these patches, we must consider whether the transformation E1(X) affects the
transformation R(X, Y). Renaming a file is independent of the contents of the
file so we see that the transformation R(X, Y) should not be affected and thus,
q = X and r = Y . When we consider if E1(X) is affected by R(X, Y), we realize
that the edit should be applied to Y instead of X. After the reordering we are

1The order of function composition is the reverse of the order for patch sequences.

3.2. COMMUTE 19

renaming the file before applying the edit, and this means that we must now
apply the edit to the new name of the file. Therefore, after the rename of X to
Y the edit to X should be applied to Y and we see that s = Y . Thus we get
the following result,

��
o[[E1(X)]]a[[R(X, Y)]]bXX → o[[R(X, Y)]]c[[E1(Y)]]d.

Finally, notice that the contexts of the patches are different before and after
reordering the patches. Context is defined to be a sequence of patches and so
reordering the patches changes the sequence. Intuitively, we want the context b
to be equivalent to the context d, but we save this discussion for Section 3.2.2.

Now we turn to a slightly bigger example. This time we assume that the
context of the repository is such that the files with names X and Y exist but
there is no file named Z.

Consider the patches o[[E1(X)]]a and a[[E2(Y)]]b. Similarly, suppose we
create the patch sequence b[[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]]e that swaps the file
names of X and Y . For the remainder of this example, we will omit the con-
texts of the patches, as we are chiefly interested in the effect of commutation on
patches. In the following sections we will examine the effect that commute has
on context. This gives us a patch sequence,

[[E1(X)]][[E2(Y)]][[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]].

In English, [[E1(X)]][[E2(Y)]] modifies the file named X and modifies the file
named Y , while [[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]] swaps the names of X and Y .
Therefore, this sequence modifies X, modifies Y and finally swaps the file names
X and Y .

First we will commute [[E2(Y)]] all the way to the right and then com-
mute [[E1(X)]] to the right. When we commute [[E2(Y)]] with [[R(Y, Z)]] we get
[[R(Y, Z)]][[E2(Z)]], using the same reasoning as the previous example.

Showing this commute as one step we write,

[[E1(X)]]
��

[[E2(Y)]][[R(Y, Z)]]XX [[R(X, Y)]][[R(Z,X)]]

→ [[E1(X)]][[R(Y, Z)]][[E2(Z)]][[R(X, Y)]][[R(Z,X)]].

Next we commute [[E2(Z)]] with [[R(X, Y)]]. This time the commute is trivial
since the transformations are independent of each other and results in,

[[E1(X)]][[R(Y, Z)]]
��

[[E2(Z)]][[R(X, Y)]]XX [[R(Z,X)]]

→ [[E1(X)]][[R(Y, Z)]][[R(X, Y)]][[E2(Z)]][[R(Z,X)]].

20 CHAPTER 3. DATA MODEL AND INVARIANTS

When we commute [[E2(Z)]] and [[R(Z,X)]] the outcome is similar to the
first commute, and we need to update the transformation in the patch [[E2(Z)]]
to modify the file X. The resulting sequence is,

[[E1(X)]][[R(Y, Z)]][[R(X, Y)]]
��

[[E2(Z)]][[R(Z,X)]]XX

→ [[E1(X)]][[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]][[E2(X)]].

When we commute [[E1(X)]] through the sequence there is again only two
commutes where we update the state transformation. After doing all the com-
mute steps we would have the following sequence,

��
[[E1(X)]][[R(Y, Z)]]XX [[R(X, Y)]][[R(Z,X)]][[E2(X)]]

→ [[R(Y, Z)]]
��

[[E1(X)]][[R(X, Y)]]XX [[R(Z,X)]][[E2(X)]]

→ [[R(Y, Z)]][[R(X, Y)]]
��

[[E1(Y)]][[R(Z,X)]]XX [[E2(X)]]

→ [[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]][[E1(Y)]][[E2(X)]].

To summarize, we started from this sequence,

[[E1(X)]][[E2(Y)]][[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]],

and after several commutation steps we arrived at the sequence

[[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]][[E1(Y)]][[E2(X)]].

The two sequences are different operationally but they modify the state of the
repository in the same way. In particular, notice that we apply the transforma-
tion E1(x) to Y after the reordering, but before the reordering it was applied to
X. The patch containing the transformation E2(x) underwent a similar modi-
fication.

If we had simply treated the state transformations as commutative functions,
then we would have an invalid composition of transformations. After all of the
reordering in this example E1(X) would still be a transformation on the contents
of a file with name X even though the file with name X was renamed to Y .
Thus, E1(X) would modify the wrong file contents.

3.2. COMMUTE 21

In the first example we saw that patch commutation always modifies the
context of the patches and only some of the time changes the state transforma-
tion. Also, each new commutation step gives a new sequence yet each sequence
defines the same final repository state.

These examples were designed so that all of the patch commutations would
succeed, but in general commutation of two patches may not be possible. For
example, it does not make sense to commute a patch that creates a file with a
patch that modifies that file. We also do not attempt to define patch commute
for patches that are not adjacent in a patch sequence.

3.2.2 Abstract Interface

The example in the previous section shows that if we commute state transfor-
mations the resulting sequence of transformations is not guaranteed to produce
the correct state. Fortunately, the example did illustrate that we can derive
new state transformations, and hence new patches, while reordering adjacent
patches. This principle is the intuition behind the patch commute operation.

We give the following abstract definition of commute, similar to that found
in the Darcs manual [Rou09b].

Definition 3.2.1. For two patches oAa and aBb we define an operation, which
may fail, called commute such that if oABb commutes to the patches oB1Ab

1,
then we write oABb ↔ oB1Ab

1.

While the details of the Darcs commute implementation are beyond the
scope of this document, we assume the Darcs patch commute is implemented in
such a way that properties such as the following hold.

Property 3.2.1. Patch commute is self-inverting. For example, if AB ↔
B1A1, then B1A1 ↔ AB.

Property 3.2.2. Patch commute preserves the pre-context and gives an equiv-
alent post-context of the sequence when adjacent patches are commuted. For
example, if aAbBc ↔ xAy

1B
z
1, then it must be the case that a = x2, and we de-

fine z to be equivalent to c, while the relationship between b and y is unknown.
Intuitively we want the sequence that results from commute to define the same
repository state.

We want the above properties so that patch commute will be an equivalence
relation on sequences of patches. For patch sequences that are related by some
number of commutes we write ! and say “can be commuted to.” For example,
if AB↔ A1B1, then AB ! B1A1 after just one commute.

For the relation ! to be an equivalence relation, it must satisfy the follow-
ing [Rot02] for all patch sequences x, y and z:

1. x ! x;

2This is true because the patch sequence to the left, if any, has not been altered.

22 CHAPTER 3. DATA MODEL AND INVARIANTS

2. if x ! y then y ! x;

3. if x ! y and y ! z then x ! z.

Here we take the property that the relation ! forms an equivalence relation
for granted much like we assume here that the Darcs commute implementation
is correct. That is, the specification of Darcs commute, eg., Patch Theory,
specifies that the relation ! must be an equivalence relation and it would be
a defect in the Darcs implementation if it were not. For this reason, we do
not give a proof here. Providing a rigorous proof that ! forms an equivalence
relation is left as future work.

Every equivalence relation partitions elements into disjoint sets known as
equivlance classes [Rot02]. Here the equivalence classes are sequences of patches
that define the same final repository state, but this is not to say that all se-
quences that define a common final repository state are in the same equivalence
class.

In Definition 3.1.3 we said that a context is a sequence of patches. Now
that we can use the relation ! to talk about equivalent sequences of patches
we may also talk about equivalent contexts. By equivalent context we mean
sequences of patches that are equivalent under the relation !. Equivalent
contexts should define identical repository states. To fully define equivalent
contexts we also need to consider inverse patches in the next section. Also,
we do not distinguish in our notation between contexts that are identical and
contexts that are equivalent.

In summary, we see that when it is possible to commute patches, the pre-
and post-contexts of the patch sequences are equivalent and the operation of
commutation results in new patches that are semantically linked to the original
patches.

3.3 Inverse Patches

The idea of inverse patches is borrowed from the Darcs manual [Rou09b]. The
inverse of patch B is denoted, B, and has the property that the state trans-
formation in B is the inverse of the state transformation in B. We define the
pre-context of B to be the same as the post-context of B. The composition BB
results in a context that defines the same repository state as the pre-context
of B. For this reason, we define the post-context of B to be equivalent to
the pre-context of B. In our notation we write, oBb and bBo by the following
property.

Property 3.3.1. Let oBb be a patch and let xBy be the inverse patch. We
define o to be equivalent to y and b to be equivalent to x.

The intuition behind this property is that each patch has an inverse patch
which nullifies, or undoes, the effects of the patch including resetting to an
equivalent context.

3.4. EQUALITY 23

3.4 Equality

The properties of patches give rise to the following result which is useful for
determining when contexts are equivalent.

Property 3.4.1. Given two patches, xAy and uBv, that contain the same
transformation of state, T , then x is equivalent to u, if and only if, y is equivalent
to v.

Property 3.4.1 is useful for proving when contexts are equivalent after per-
forming a series of commutes, or when examining two patches that start or end
in the same context.

Note that given two arbitrary patches xAy and uBv, Property 3.4.1 does
not apply, unless A and B share the same transformation. Without this extra
condition the states defined by y and v may be the same without the contexts
being equivalent.

3.5 Merge

Here we turn to the theory required to merge two sequences of patches. Prop-
erty 3.5.1 demonstrates how commutation allows us to transform patches by
way of commute so that patches that were initially in different contexts may be
merged into a sequence. The following property corresponds to Theorem 2 of
the Darcs manual [Rou09c].

Property 3.5.1. Given four patches oAa, aBb, cAb
1, and oBc

1 then

oAaBb ↔ oBc
1A

b
1, if and only if, aAoBc

1 ↔ aBbAc
1.

As we will see later, a valuable property of merge is that it is symmetric. We
can see that merge is symmetric by examining how we would use Property 3.5.1
in practice. By this property, we can merge two patches which have the same
pre-context and put them into a sequence assuming that they may be commuted.

Using the same patches as the statement of Property 3.5.1, we could visualize
the patches as being parallel3:

a c

o
A

__@@@@@@@ B1

??�������

Starting with either oAa or oBc
1 we could arrive at two different sequences

that share equivalent pre- and post-context. We achieve this with the following
steps:

3We consider patches that share a pre-context to be parallel whereas patches that share a
post-context are said to be anti-parallel.

24 CHAPTER 3. DATA MODEL AND INVARIANTS

1. We start by applying the inverse patches aAo and cBo
1 respectively and

get oAaAo and oBc
1B

o
1, corresponding to:

a

A
��

c

B1

��
o

A

GG

o

B1

GG

2. Apply oBc
1 to the end of the sequence oAaAo and then use Property 3.5.1

to get oAaAoB1 ! oAaBbAb
1, corresponding to:

b b
A1

��>
>>

>>
>>

>

a
A

��

c ! a

B

??��������
c

o
A

VV

B1

??�������
o

A

__@@@@@@@

Next, apply oAa to the end of the sequence oBc
1B

o
1 and again then use

Property 3.5.1 to get oBc
1B

o
1A

a ! oBc
1A

b
1B

a, corresponding to:

b b
B

����
��

��
��

a c
B1

��

! a c

A1

__>>>>>>>>

o
A

__@@@@@@@
B1

HH

o
B1

??�������

3. Remove patches bAc
1 and bBa from the right end of their respective se-

quences. This leaves us with two different sequences of patches having
equivalent pre- and post-contexts. By being explicit about the context of
the patches, we see that we are left with oAaBb and oBc

1A
b
1. We can also

see the symmetry of merge visually:

b

a

B

??��������
c

A1

__>>>>>>>>

o
A

__@@@@@@@ B1

??�������

The symmetry of merge is important because it means patches can be merged
in any order and the resulting repository will have an equivalent context which
in turn means it will have the same state. The symmetry of merge is what
allows us to realize our goal of letting users treat a repository as an unordered
collection of changes.

3.6. SUMMARY 25

3.6 Summary

The core of Darcs relies on manipulating patches in several key ways:

� There is a commute function that takes two patches and either fails or
returns two new patches which correspond to similar transformations of
state but have slightly different pre- and post-contexts.

� By commuting patches in sequences we are able to relax the definition of
context to equivalent contexts.

� The pre- and post-context of each patch must be carefully tracked to avoid
data corruption. This includes contexts which only exist temporarily, or
theoretically, as patch sequences are commuted.

As the example commute in Section 3.2.1 shows we cannot just apply patches
whenever the state matches the domain of the patch’s state transformation.
Doing so could lead to different results depending on the order the patches are
applied in. To avoid data corruption we use commute when we need to reorder
patches. The goal of our work is to make sequence manipulations safe and give
static guarantees about that safety. Here, “safe” means that the contexts are
always respected and data corruption due to applying patches in the wrong
context is avoided.

In the next chapter we will re-examine the properties defined in this chapter
to see which ones may be statically enforced by the Haskell type checker.

Chapter 4

Checked Invariants

Now that we have established the most fundamental properties and constraints
of Darcs patch manipulation in Chapter 3, we will show our way of encoding
the invariants into Haskell types.

Our goal is to ensure the properties from Chapter 3 are checked at compile
time. We also seek to find a balance between spending all of Darcs development
time on correctness versus writing new code and adding useful features. An
overview of the properties we cover is given in Table 4.1.

Table 4.1: Patch Theoretic Properties

Property Description Discussed in Section

Definition 3.1.4 Patch Section 4.5

Definition 3.1.5 Pre- and post-context Section 4.5

Definition 3.2.1 Commute Section 4.7

Definition 3.1.1 Repository and patch sequence Section 4.8

Property 3.5.1 Merge Section 4.9

Property 3.4.1 Patch equality Section 4.10

Throughout this chapter we make use of existentially quantified types and
Generalized Algebraic Data Types (GADTs). A brief introduction to existen-
tial types is given in Appendix A. A brief introduction to GADTs is given in
Appendix B.

4.1 Sealed Types

One technique that we rely on heavily is the use of existentially quantified types.
We use existentially quantified type variables in several different ways. The most
basic appears in our Sealed data type.

26

4.2. WITNESS TYPES 27

Existentially quantified types give us a way to mark some of our types as
distinct from all other types. We use a special data type, called Sealed, to
hold the existentially bound types. Using the GADT extension it is defined as
follows:

data Sealed a where

Sealed :: a x → Sealed a

Using the Sealed data constructor the type parameter x is hidden inside the
Sealed type. The only thing we can currently recover about the existentially
quantified type x is that it exists. This means that when we pattern match on
a value of type Sealed:

f :: Sealed a → ()

f (Sealed a) = ()

The type system must invent a new type for x, referred to as an eigenvariable,
inside the pattern match of f. Again, this eigenvariable for x is distinct. The
only type it is equal to is itself. We also cannot expose the eigenvariable to a
higher level. Although we can pass the eigenvariable to a polymorphic function.

4.2 Witness Types

We consider a witness type to be a type that demonstrates that a particular
property is true. The witness acts as evidence of the property.

We use this idea to represent a proof of type equality. The following EqCheck

type represents an equality check between two types, a and b, it is written in
the GADT notation, explained in Appendix B:

data EqCheck a b where

IsEq :: EqCheck a a

NotEq :: EqCheck a b

If the types a and b are equal, then we may use the data constructor IsEq,
otherwise we must use NotEq. At the end of the next section we give an example
of how this type can witness a proof.

4.3 Phantom Types

A phantom type is a type that has no value associated with it, such as phantom

in the following:

data P phantom = P Int

Above, the type variable phantom has no value associated with it on the right-
hand side of the equal sign. This means that whenever we construct a value of

28 CHAPTER 4. CHECKED INVARIANTS

type P we may also give a type for phantom. Since phantom has no value associated
with it, it is free to unify with anything in the type system.

For example each of the following is valid, even within the same program:

P 5 :: P String

P 5 :: P [Int]

P 5 :: P (IO ())

We could imagine each of the above examples as branding the value P 5. In
other words, one application of phantom types is that they allow us to embed
extra bits of information in our types. In particular we want to attach evidence,
or proofs, to our types. Which is to say, we want to associate the phantom type
with a witness type.

4.4 Example

We would like to combine witness types and phantom types so that our proof
carrying types appear as phantom types. A partial justification for this is: a) us-
ing phantom types allows for our incremental approach discussed in Section 5.1,
and; b) associating a full patch sequence with each context type would result in
an intolerable run-time overhead.

Relying on the accuracy of witness types when they appear as phantom
types can be problematic; when a value is constructed the type of a phantom
is essentially arbitrary. To be able to rely on the information embedded in
phantom types we need ways to control the type unification.

One approach is to hide the data constructors and only expose specialized
functions for constructing the datatype. These constructors are often known
informally as smart constructors. In our case, we might create the mkIntP smart
constructor which only allows for the construction of values having the type
P Int:

mkIntP :: Int → P Int

mkIntP n = P n

We could make a similar smart constructor for values of type P String:

mkStringP :: String → P String

mkStringP s = P (length s)

This works well as long as set of tags is either completely open or closed to
a small set of types. The reason is simple, either we provide full access to the
data constructor or we make a smart constructor for each allowed tag. Suppose
instead that there are specific rules about what is a valid tag but the set of
allowed tags is unbounded. Now we need a new approach.

In the previous section we defined the EqCheck a b witness type. Now we
combine the concept of witness types with existentially quantified types.

4.5. PATCH REPRESENTATION 29

As an example, suppose we have another data type E, which uses existential
quantification on the type variables a and b:

data E where

E :: a → b → EqCheck a b → E

To construct a value of type E we must supply three values, a value of type a,
b, and an EqCheck a b value. The type of the E constructor forms a relationship
between the first two input values and the EqCheck a b value. To illustrate this
point the following is valid:

E 1 2 IsEq

While, this example is invalid:

E '1' 2 IsEq -- invalid

The second example could be made valid by using NotEq instead as follows:

E '1' 2 NotEq -- valid

When we pattern match on a value of type E we can use the witness type
EqCheck to gain information about the existentially quantified types a and b:

test :: E → Bool

test (E a b IsEq) = True

test (E a b NotEq) = False

At the point of pattern matching in test we know more than just which
data constructor of EqCheck was used, we also recover information about the
type equality status of a and b. In the first pattern match the IsEq constructor
tells the type checker that a and b are the same type even though a and b are
existentially quantified. Without this extra information, the type system would
treat a and b as distinct types.

In this example our witness type provides a proof that is stronger than a
run-time check. Here, the type checker is able to see that the types are the
same. In our example no run-time check is needed and therefore no cast of a

to b is needed, but in some cases it can still be useful. The complications of
providing a run-time type equality is discussed in Section 5.2.

When a run-time check is desired to determine type equality we also need a
dynamic cast [BS02]. In such a case, a value of type EqCheck a b can be useful
for passing around the evidence from the equality check. The key point is that
by pattern matching on the IsEq data constructor we inform the type system
that the two types a and b of the EqCheck are equal. This allows us to use the
IsEq data constructor as a first class proof of type equality at run-time.

4.5 Patch Representation

Before we examine how to represent patch contexts, we first look at how the
transformations that make up patches are represented. We begin by looking at

30 CHAPTER 4. CHECKED INVARIANTS

a simplified definition of the Prim data type in the Darcs implementation. This
abstraction is the primitive representation that corresponds most closely to the
Patch Theory discussed in Chapter 3.

data Prim where

Move :: FileName → FileName → Prim

DP :: FileName → DirPatchType → Prim

FP :: FileName → FilePatchType → Prim

Identity :: Prim

ChangePref :: String → String → String → Prim

Here we list all of the data constructors that appear in the Darcs source,
except the Split data constructor which is omitted because it is obsolete. Each
one is explained as follows:

� Move: Represents a file or directory rename.

� DP: The given file name is either added or removed based on the value of
DirPatchType.

� FP: The given file name is either added, removed, or modified based on
the value of FilePatchType.

� Identity: This patch type has no effect on the repository as it represents
the identity transformation.

� ChangePref: Changes a preference setting for the repository.

The first patch property that we are concerned with is that patches have
both pre- and post-context, described in Definition 3.1.5. To encode this in
Haskell’s type system we use GADTs and phantom types to represent context
for patches. Thus we have the following definition:

data Prim x y where

Move :: FileName → FileName → Prim x y

DP :: FileName → DirPatchType x y → Prim x y

FP :: FileName → FilePatchType x y → Prim x y

Identity :: Prim x x

ChangePref :: String → String → String → Prim x y

The phantom types x and y correspond to pre- and post-context respectively.
In our type encoding we are only concerned with contexts that are equivalent,
and here we represent only equivalent contexts as described in Section 3.2.2.

One interesting data constructor is Identity, which by definition preserves
context. Each of the other data constructors corresponds to a type of patch
which does change the context and the phantoms express this transformation
from x to y.

The main relationship which is expressed by our use of phantom types is that
of how the context is changed by a patch or by a sequence of patches. Although

4.6. DIRECTED TYPES 31

this may seem like a simple relationship, the types that can be expressed this
way are still quite helpful in constraining the possible operations and also useful
as machine checkable documentation.

4.6 Directed Types

Darcs patches have a notion of transforming between contexts. This naturally
leads us to container types that are “directed”, and transform from one context
to another.

4.6.1 Directed Pairs

The simplest directed type is a directed pair.

data (a1 :> a2) x y = forall z. (a1 x z) :> (a2 z y)

data (a1 :< a2) x y = forall z. (a1 z y) :< (a2 x z)

Our definition of directed pairs uses a GHC extension that allows type con-
structors to be infix. We only use infix type constructors because we find them
syntactically pleasing. We refer to :> as a forward pair and :< as a reverse pair.

In the above definition the types a1 and a2 are the element types in the pair.
The forall keyword is used to make z an existentially quantified type variable.
When two types are placed in a forward pair using :> part of each type must
match. Suppose we had the two types, Either String Int and Int → Bool, then
we could create the type, (Either :> (→)) String Bool. Notice that the Int in
both types gets hidden due to the existential quantification of z. We would
need to swap the order of the elements to construct a reverse pair with them as
you can tell by looking at where z appears in the definition of :<.

Using the Prim type we could store a pair of patches:

Move "X" "Y" :> Move "Y" "Z" :: (Prim :> Prim) a b

Much like our example in Section 4.4, we insert the patches into the forward
pair as they are constructed. This acts to partially constrain the phantom types
of the Prim type and also adds a relationship between the phantom types through
the existential quantification in the directed pair.

We use existentially quantified types to represent context for two main rea-
sons, a) contexts are implicitly stored by Darcs and, b) we need to work with
an unbounded number of distinct contexts. Either of the previous two points
means we would not be able to manage an explicit type for each context. Thus,
we are using the type system to do a great deal of the work for us. We do use
one concrete type as a context. We use the Haskell type unit, or (), as the type
of the empty repository.

32 CHAPTER 4. CHECKED INVARIANTS

4.6.2 Forward Lists

We create the forward list type, which can be used to store types that are
parametrized over exactly two other types. One such type is Prim, another suit-
able type for forward lists are functions. For concrete examples using functions
see Appendix C.

data FL a x z where

(:>:) :: a x y → FL a y z → FL a x z

NilFL :: FL a x x

In the definition above, a, is the element type stored in the list and x and z

are types which enforce an ordering on the elements of the list.
The constructor NilFL represents the empty forward list. Because an empty

forward list has no elements and carries no transformation we give it the type
FL a x x.

The constructor (:>:), takes some element with type parameters x and y,
a forward list with the same element type but type parameters y and z, and
produces a forward list with type parameters x and z. The type y is hidden
inside the forward list as an existentially quantified type variable. This works
for storing elements but it does make some operations tricky as we will see later.

An example of a forward list holding values of type Prim:

Move "Y" "Z" :>: Move "X" "Y" :>: Move "Z" "X" :>: NilFL :: FL Prim a b

The above sequence of patches would swap the names of the files X and Y.
Once the list has been constructed if we try to reorder the elements we would
get a type error. For example, this function would not be valid:

rearrange :: FL Prim x y → FL Prim x y

rearrange (x:>:y) = y:>:x -- This will not type check

Once the list is created the context types become fixed. After that we can
only put them into a forward list if we respect the relationships between the
contexts.

4.7 Expressing Commutation

In Definition 3.2.1, we define commutation of patches as a partial relation. We
can now give a type for commute on Prim patches:

commutePrim :: (Prim :> Prim) x y → Maybe ((Prim :> Prim) x y)

The concrete implementation of commutePrim is important to Darcs but is
not particularly relevant to this discussion and is omitted here. In the actual
implementation a type class is used so that commute is polymorphic over the
various patch types. Notice that commutePrim has a Maybe return type. This is
because patch commutation is not a total relation. Again, these phantom types

4.8. PATCH SEQUENCES 33

represent not a single context, but an entire equivalence class, as described in
Section 3.2.2.

4.8 Patch Sequences

Patches have an associated state transformation and we need to apply patches
in a way that their contexts are respected. When a patch is recorded we know
that it will apply in the current context of the repository. If we also store
patches in the order they are recorded, then we know they can also be applied
in that order. It would be useful if we had a way to store patches such that
their application domains are ensured to be in the correct order.

In Section 4.6.2, we introduce a data type, FL, for forward lists. This data
type is suitable for storing chains of functions in application order. Here we use
forward lists for storing sequences of patches. Instead of storing functions by
domain and range, we store patches by pre- and post-context.

Storing patches in context order allows us to bundle up sequences of patches
and concern ourselves with just the pre- and post-context of the entire sequence.
When extracting elements from the sequence, the context types are lost and we
only retain the relationship between context types.

When extracting patches from an FL or RL sometimes we do know which
context a patch should have but our use of existentially quantified types means
the type system is pessimistic about context equivalence. To work around this
we use patch equality functions described in Section 4.10.

By combining commutePrim from the previous section with forward lists we
can commute a patch with a sequence of patches. We give this operation the
name commuteFL:

commuteFL :: (Prim :> FL Prim) x y → Maybe ((FL Prim :> Prim) x y)

commuteFL (a :> b :>: bs) = do b' :> a' ← commutePrim (a :> b)

bs' :> a'' ← commuteFL (a' :> bs)

Just (b' :>: bs' :> a'')

commuteFL (a :> NilFL) = Just (NilFL :> a)

The monad instance of Maybe handles the cases where commutePrim fails and
returns Nothing. The type checker makes it very difficult now to give an incorrect
definition of commuteFL.

There are very few incorrect definitions we could give above that would
type check. For example, we cannot simply return the input because the type
says that the order of the forward list and the patch must be switched in the
return value. If we try to return a different list than b' :>: bs', such as NilFL or
b' :>: NilFL, then we will find that the type checker complains.

We could rewrite commuteFL so that it returns a :>: xs :> x, where x is the
last element of bs and xs :>: x is the same sequence as b :>: bs. Two other
possibilities include returning undefined or Nothing. Inspecting for one these
mistakes is much easier than manually checking that all the steps above respect
patch context.

34 CHAPTER 4. CHECKED INVARIANTS

We have been able to implement a full library of sequence manipulations for
both forward and reverse lists. Many of the definitions, such as the ones named
in Appendix C work on any forward list. Others, such as commuteFL, work only
for sequences of patches.

4.9 Patch Merge

Property 3.5.1 tells us that when we have two patches which commute and
share the same pre-context that we can merge the patches. Whenever patches,
or sequences of patches, share a pre-context we say they are parallel. Similarly,
when patches, or sequences of patches, share a post-context we say they are
anti-parallel. The following types correspond to parallel and anti-parallel pairs:

data (a1 :\/: a2) x y = forall z. (a1 z x) :\/: (a2 z y)

data (a3 :/\: a4) x y = forall z. (a3 x z) :/\: (a4 y z)

Notice how these definitions correspond to our previous visualization of the
symmetry of merge, except that here we are using existential quantification for
the pre- and post-contexts of the sequences:

∃z

x

a3

>>~~~~~~~~
y

a4

``@@@@@@@@

∃z
a1

``@@@@@@@@ a2

>>~~~~~~~~

The input to our merge function is a parallel pair, for example for the Prim

type this would be:

merge :: (Prim :\/: Prim) x y → (Prim :/\: Prim) x y

The implementation of merge, at least for pairs of patches, follows the sym-
metry of merge example in Section 3.5. Our merge implementation returns the
results in an anti-parallel pair because it returns symmetric results. That is,
instead of returning just the merged sequence, two patches are returned so that
two different sequences, both having the same pre- and post-contexts, can be
constructed from the result.

The two sequences that can be built are documented within and constrained
by the type signature of merge. For example, suppose we have the patches p1

and p2 and we use merge to get the patches p1' and p2':

(p1 :\/: p2) :: (Prim :\/: Prim) x y

(p2' :/\: p1') :: (Prim :/\: Prim) x y

4.10. PATCH EQUALITY 35

Using α for the existentially quantified type in the pair p1 :\/: p2 and β for
the existentially quantified type in the pair p2' :/\: p1', the types would be as
follows:

p1 :: Prim α x

p2 :: Prim α y

p1' :: Prim y β

p2' :: Prim x β

The only context preserving sequences we could create with an FL are these
two:

p1 :>: p2' :>: NilFL :: FL Prim α β

p2 :>: p1' :>: NilFL :: FL Prim α β

Any other forward list sequences we try to construct from the above four
patches would result in type errors!

4.10 Patch Equality

In Section 4.2 we introduced our type witness for type equality functions. Here
we use that type to implement parallel and anti-parallel patch equality tests.
To implement patch equality we must also introduce an unsafe operation, the
problems with this are discussed in Section 5.2. We use the PatchEq type class
for patch comparison which defines the following functions:

class PatchEq p where

(=\/=) :: p a b → p a c → EqCheck b c

(=/\=) :: p a c → p b c → EqCheck a b

We refer to (=\/=) as parallel equality and (=/\=) as anti-parallel equality.
These equality checks for patches are based on Property 3.4.1.

Note that we do require a run-time check to implement both of the above
equality functions.

4.11 Summary

Using a combination of phantom, witness and existential types we are able to
describe many of the Patch Theory properties in Haskell types. The nature of
Haskell’s type system means that these properties are checked for us at compile
time.

We have not encoded all of the Darcs semantics and there are several key
things which we do not express. For example, a more accurate encoding of
context equivalence classes would directly use sequences of patches instead of
existentially quantified types. We have chosen not to model the context types
that way at this time. Partially due to the extra programmer effort, but also
because of the extra run-time overhead.

36 CHAPTER 4. CHECKED INVARIANTS

In the next chapter we will discuss these points in more detail as well as the
ramifications of applying these ideas to Darcs.

Chapter 5

Discussion

We have outlined the core of the techniques we applied to the Darcs source
code. Now we will discuss the implications of working with an existing code
base and the direct benefits. The incremental nature of our work is covered in
Section 5.1. Many of the pit-falls, setbacks and other hurdles we encountered
are covered in Section 5.2. In Section 5.3 we give examples of how this work
has improved the Darcs source code.

5.1 Incremental Approach

One of the main challenges with implementing our approach is how to do so in
an existing real-world application. Because of this challenge, we needed an im-
plementation plan that is incremental, minimally invasive, and possible without
refactoring large parts of the code on the first pass. An incremental approach
allows us to work in manageable chunks as volunteer developers can find time.
A minimally invasive approach means that there is less risk of introducing new
bugs because less code must be changed. Finally, refactoring large parts of the
code on the first pass would make it very hard for other developers to review
the work.

Following a similar approach to Kiselyov and Shan [KS07], we started in the
core of Darcs, where the logic for patch manipulation is defined, to establish a
trusted kernel of patch logic. Because our work centers around static guaran-
tees and we have a goal of incremental work, it is natural for us to adopt an
implementation strategy that can be enabled or disabled at compile time. We
achieved this by using phantom types to carry our witness types giving us the
freedom to disable, or remove, the phantom types much like Kahrs [Kah01].

By using techniques that provide compile time guarantees with no run-time
component, we were free to incrementally refactor the code base. Even more
than working incrementally, we provide two compilation modes giving our ap-
proach a distinct feeling of working with a proof assistant. There is the normal
compilation mode and there is the witness type, or patch-context aware, compi-

37

38 CHAPTER 5. DISCUSSION

lation mode. The stricter patch-context aware compilation mode is used to ver-
ify patch manipulations during development, refactoring, and checking changes
from contributors. For creating release binaries, the normal compilation mode
is used. The normal compilation mode hides the phantom types, which carry
our proofs, from the type system.

To meet our need of having a compile time switch we use C Pre-Processor
(CPP) defines. In particular, when compiling the source code with our patch-
context aware types we define the CPP symbol GADT_WITNESSES and make the
following definitions:

#ifdef GADT_WITNESSES

#define C(contexts) contexts

#define FORALL(types) forall types.

#else

#define C(contexts)

#define FORALL(types)

#endif

The above definitions allow us to write our type signatures as the following
example shows:

data EqCheck C(a b) where

IsEq :: EqCheck C(a a)

NotEq :: EqCheck C(a b)

Simply by defining or not defining the symbol GADT_WITNESSES we can control
at compile time if the code is patch-context aware. The CPP macro C surrounds
phantom types that represent a context. The CPP macro FORALL is useful for
mentioning context types when we need to explicitly provide a forall in a type
signature, for example when using lexically scoped type variables.

Since we are working incrementally using a relatively primitive approach not
all of the source code can be compiled when GADT_WITNESSES is defined, but this
is acceptable for our purposes. Eventually all of the code will be compatible
with patch-context types, but for now it allows us to work incrementally while
receiving the benefits on the core modules of Darcs where correctness of patch
manipulations is of the most importance.

The Darcs development process requires that once all the definitions in a
particular module are patch-context aware, that module is added to a special
list of modules, named witnesses. Whenever patches are accepted to the Darcs
source code, the modules in the witnesses list are checked to ensure that each
compiles with the macro symbol GADT_WITNESSES defined. For this reason, once a
module has been converted to be patch-context aware, we lose no safety by com-
piling Darcs without GADT_WITNESSES. In essence, the automated proof assistant
is given a chance to reexamine the code whenever it is modified.

A noteworthy, but unplanned, side effect of surrounding context types with
the macro C is that it helps to visually separate context types from types that
are unrelated to context. At first, the macro C may seem like visual noise but it

5.2. DIFFICULTIES 39

is the author’s experience that most developers adjust to the notation favorably
after using it for a short time.

One minor annoyance with using CPP macros is that the CPP implemen-
tation used by GHC cannot handle the single quote character on the same line
as a CPP macro. The Darcs source code often uses the single quote character
at the end of identifiers to signify an expression which is derived from a previ-
ous expression and this can lead to surprising error messages. For example, we
modify the forward list append definition to include a single quote character on
the same line as a C macro:

(+>+) :: FL a C(x y) → FL a C(y z) → FL a C(x z)

NilFL +>+ ys = ys'

where ys' = ys :: FL a C(y z)

(x:>:xs) +>+ ys = x :>: xs +>+ ys

Now we get the misleading error message:

Not in scope: type constructor or class ‘C’

Unfortunately, these errors can be confusing to developers and waste time.
The implementation of CPP used by GHC is designed for pre-processing C
code and makes assumptions about legal identifier characters. This error hap-
pens because the single quote character is a valid identifier character in Haskell
identifiers but it is illegal in C identifiers.

5.2 Difficulties

The approach we have taken is not without difficulties and trade-offs. In this
section we outline the major problems we encountered.

5.2.1 Intentional Context Coercion

Although not defined in the Haskell 98 report, many Haskell implementations
provide a function for arbitrarily changing the type of an expression. This
function is commonly given the following name and type signature: unsafeCoerce

:: a → b

This function, unsafeCoerce intentionally circumvents type safety to give the
programmer ultimate control over the types in the program. This ability to
circumvent type safety puts the burden of type soundness on the programmer,
which is occasionally useful.

We apply a restriction to the generality of unsafeCoerce so that it can only
affect part of the type of a value. We define the following patch coercion func-
tion:

unsafeCoerceP :: a x y → a b c

unsafeCoerceP = unsafeCoerce

40 CHAPTER 5. DISCUSSION

There are times when we need to coerce, or change, context explicitly. One
reason for this is that our contexts depend on run-time values, but we have
other uses for unsafeCoerceP which arise from a purely pragmatic standpoint.

The following two sections, 5.2.1 and 5.2.1, give illustrations of when we use
context coercion.

Context Equivalence

The development process for Darcs requires that any use of a function having
a name that begins with “unsafe” be carefully scrutinized. In practice, the use
of unsafeCoerceP is not common and the scrutiny happens on the public Darcs
mailing list when source changes are submitted by contributors. One goal of
Darcs development is to compartmentalize all uses of unsafe functions to a core
set of modules that provide safe interfaces.

As an example of compartmentalizing unsafe functions, we favor the use
of the type class function =\/= over the use of unsafeCoerceP. Although =\/= is
defined in Section 4.10, we give the definition here as well for convenience:

class PatchEq p where

(=\/=) :: p a b → p a c → EqCheck b c

(=/\=) :: p a c → p b c → EqCheck a b

We give an example instance based on a trivial patch type P:

data P a b = P

instance PatchEq P where

P =\/= P = unsafeCoerceP IsEq

P =/\= P = unsafeCoerceP IsEq

The instance of PatchEq for the Prim type is slightly more involved but in
essence the instance simply compares the patches for structural equality while
relying on the type signature to constrain when the equality check is allowed.
We will use this PatchEq instance for P in the next section as well.

The patch equality checks given here use type witnesses to carry informa-
tion gained by doing the equality check. The techniques typically used in the
literature require that the set of types which can be cast be known fully by
the programmer to avoid the use of unsafeCoerce. Instead of using unsafeCoerce,
a function for dynamic casting is provided between the types. This typically
requires creating a type class instance for the types.

This technique can be found in the Haskell library, Typeable [BS02]. Note
that, even Typeable can be used to derive unsound functions with type a → b

by creating “malicious” type class instances [Kis09].

Interfacing with Older Modules

In the Darcs implementation, the DarcsRepo module is being phased out in favor
of the newer HashedRepo module, which uses hashes for improved robustness and

5.2. DIFFICULTIES 41

atomicity of operations. The HashedRepo module is written internally with our
witness type style whereas the older DarcsRepo module only supports the witness
types superficially in most places. Consider the read_repo function which reads
from a repository and returns the set of patches stored in the repository:

read_repo :: RepoPatch p ⇒ Repository p C(r u t) → IO (PatchSet p C(r))

read_repo repo@(Repo r opts rf _)

| format_has HashedInventory rf = do ps ← HashedRepo.read_repo repo r

return ps

| otherwise = do Sealed ps ← DarcsRepo.read_repo opts r

return $ unsafeCoerceP ps

When reading the sequences of patches from the repository, we know that the
returned sequence of patches have a final context that matches the recorded con-
text of the repository. The type signature of read_repo expresses this through the
type r. The function DarcsRepo.read_repo in the otherwise branch of the function
does not have the right type to express this relationship whereas HashedRepo.

read_repo does. The reason for this lack of expressiveness is for entirely prag-
matic reasons. To avoid rewriting the older DarcsRepo interface we carefully use
unsafeCoerceP so that the sequence of patches returned by DarcsRepo.read_repo will
unify with the sequence of patches returned by HashedRepo.read_repo.

Examples such as read_repo are not common, and can be avoided in theory,
but in practice unsafeCoerceP can be used to save significant effort when the pay
off for that effort is small.

5.2.2 Unsound Equality Examples

While unsafeCoerceP has legitimate uses, we must be quite cautious about one
particular usage. If we are not careful we can combine =\/= with certain other
functions, and completely circumvent the safety of Haskell’s type system. While
this is very undesirable, we can learn to avoid this by understanding the exam-
ples in this section.

If we combine =\/= with a function that returns a type involving phantoms
types, and those phantom types are unconstrained with respect to the types of
input parameters, then we can recreate unsafeCoerce :: a → b.

The following examples demonstrate the problem of recreating an unsafe
operation. Note, we use an additional feature of GHC for these examples known
as lexically scoped type variables. The scope of type variables is introduced by
the use of an explicit forall in the type signature.1

The first example uses a data constructor P that allows us to assign arbitrary
types to its phantom types. We are using this as a place holder for real patch
types. We assume here that =\/= is defined for the type P a b such that it always

1While it could be argued that we should disallow lexically scope type variables to avoid
these unsound definitions, the approaches described in this document are significantly easier
to express when using lexically scoped type variables. Additionally, it may be possible in some
or all cases where lexically scope type variables are used to instead employ clever usage of
standard Haskell expressions and functions, such as asTypeOf.

42 CHAPTER 5. DISCUSSION

returns IsEq, such as the definition in the previous section. We use this to derive
an alternative definition of unsafeCoerce as follows:

unsafeCoerce :: forall a b. a → b

unsafeCoerce x = case a =\/= b of

IsEq → x

_ → error "a = b, making this impossible"

where (a, b) = (P, P) :: (P () a, P () b)

Below is another example that demonstrates that any function which returns
phantoms that are unconstrained by the input types can be used to reconstruct
unsafeCoerce. We use zipWithFL from Appendix C.3 but here we use the type Maybe

to work around the type checking difficulties. We could have also avoided the
use of Maybe and used unsafeCoerceP but this example demonstrates that unsound
code can be written without needing direct access to unsafeCoerceP:

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a q z → FL b j k → Maybe (FL c m n)

zipWithFL f (a :>: as) (b :>: bs) =

case zipWithFL f as bs of

Nothing → Just (f a b :>: NilFL)

Just cs → Just (f a b :>: cs)

zipWithFL _ _ _ = Nothing

The above code will type check, but notice that the returned type, Maybe (FL

c m n), has phantoms m and n that are unrelated to the input types. This allows
the type checker to unify m and n with any other types. Consider this example
of unsafeCoerce:

unsafeCoerce :: forall a b. a → b

unsafeCoerce x = case a =\/= b of

IsEq → x

_ → error "a = b, making this impossible"

where a :: FL P () a

Just a = zipWithFL f (P:>:NilFL) (P:>:NilFL)

b :: FL P () b

Just b = zipWithFL f (P:>:NilFL) (P:>:NilFL)

f _ _ = P -- The way P is constructed does not matter here.

-- f only needs to satisfy the type signature of

-- zipWithFL.

While the examples here may seem contrived, similar examples have occurred
naturally during development making this a very real issue we must consider.
We give both examples to illustrate that not only can constructors with phan-
tom types be composed with =\/= in unsound ways, but so can any function
which returns a value that has unconstrained phantom types. In this regard,
we consider such functions unsafe and avoid them when possible.

5.2. DIFFICULTIES 43

We now investigate one exception to this rule. When a function returns
an unconstrained phantom type as part of a Sealed type our program remains
sound. This is because a type that has been hidden within the Sealed type cannot
be passed up or returned to a higher level than it was existentially bound at.
For example, if we returned the type Sealed (FL c m) from zipWithFL, then we
cannot use lexically scoped type variables to get at the type of n and the above
definitions will not work.

Consider this definition of zipWithFL that uses Sealed:

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a q z → FL b j k → Sealed (FL c m)

zipWithFL f (a :>: as) (b :>: bs) =

case zipWithFL f as bs of

Sealed cs → Sealed (f a b :>: cs)

zipWithFL _ _ _ = Sealed NilFL

We could try to combine the result of this zipWithFL with =\/= but we no
longer have access to the type that was previously named n and so the examples
using lexically scoped type variables to control how it unifies will no longer
apply.

We could still try to exploit the type of parameter m, and we have the function
=/\= that can be used to make the type in the position that m occurs in equal.
The problem now is that the type where n was stored will be a distinct type
every time we pattern match on the Sealed type. The tricks above fail because
we need to take control of two phantoms on the same type in order to make
=/\= or =\/= return the desired witness type. We could try constructing one
value of type FL P a c by pattern patching on the result of zipWithFL. We could
then use the pattern match to remove the Sealed type. Looking at the result of
a =/\= a we find that the signature of unsafeCoerce makes a and b distinct and
this anti-parallel equality test fails to type check.

Finally we should note that the version of zipWithFL above using Sealed is still
not really a pratical definition because the function parameter is too general to
be useful for much. For example, zipWithFL (.) and zipWithFL (,) both fail to
type check. We would need a function parameter that is somehow meaningful
while not relying on the relationship expressed by our types.

5.2.3 Improving Context

We would like to restrict the type of unsafeCoerceP so that it can only be used
to tell the compiler when our existentially quantified phantom types should be
equivalent. We have not found a practical way to do this. Below we discuss
some of the potential workarounds.

Now that we have added witness types for the contexts it may be possible
to turn our phantom types into non-phantom types by giving each context a
distinct type based on run-time values. Doing so could provide us more precise
context equivalence as described below.

44 CHAPTER 5. DISCUSSION

For example, if we assign a unique integer to every patch, then each context
could be represented by a sequences of integers. Representing context with
sequences of integers allows us to match the definition of context exactly. The
added precision would come from run-time knowledge of the patch sequence.

Suppose we only dynamically track and check patch contexts as values, then
we would only gain guarantees through more testing. Therefore, we would like
a way to reflect these values to types. We could achieve this by dynamically
mapping the value that represents each context to a distinct type, much like
Kiselyov and Shan [KS04]. The advantage of mapping to types is that we keep
our static guarantees.

Instead of relying on existential types to create distinct contexts through
eigenvariables, we would be able to precisely assign contexts to the newly created
patches based on the current state of the repository. Essentially, our test for
context equivalence could take into consideration more precise information from
run-time values and rely less on the programmer to determine when types should
be equivalent.

Unfortunately, mapping run-time values to types comes at a significant run-
time cost [McB02]. The mapping itself is costly, but so is the implicit dictionary
passing that GHC uses to implement type classes. As McBride explains, the
performance hit may be proportional to the structural size of the type. In this
proposed scheme we expect the types to be large. Therefore, we would also
need to verify if the run-time overhead of making this change is detrimental in
practice. For example, if we implement this value to type mapping in the future,
then we may be able to disable it for release builds.

5.2.4 Type Checking

Another major concern was that of which features we could use in a stable way
and with stable releases of our chosen compiler, GHC. In this regard we were
restricted to already proposed and implemented extensions of Haskell.

A few of the troubles we encountered include:

� Each major release of GHC seems to come with revised type inference
rules for GADTs. In particular, much of our type witness code would not
compile initially under GHC 6.8. Each major release of GHC seems to
be increasingly conservative about inferring types for GADTs, but each
release seems to agree when types are properly and sufficiently annotated.
The main problem for GHC seems to be sound type inference in the pres-
ence of “wobbly-types”[PVWW06].

� As noted by Eaton [Eat06], we also experienced considerable frustration
with type errors. While our compiler permitted us to use it as a light-
weight theorem prover, the cost was in deciphering type errors. Although
thankfully our compiler had a sense of humor and would occasionally
admit, “My brain just exploded. . . ” when type checking a tricky case
involving existentially quantified types.

5.3. REAL-WORLD IMPROVEMENTS 45

� We are also forced to avoid certain syntactic constructs due to the com-
bination of features we are using. For example, the “let” and “where”
clauses commonly used for pattern matching is incompatible with data
constructors having existential types.

We can avoid “let” and “where” in Haskell by introducing a local function
definition. If the “let” occurs inside the do-notation of a monad, then we
can remove the “let” using the following trick:

example a = do let x = 5

return (a+x)

We could equivalently give this definition of example:

example a = do x ← return 5

return (a+x)

By using the latter definition we avoid the problematic “let” but the code
is less familiar to Haskell programmers.

5.3 Real-World Improvements

A natural question to ask about the work we have done refactoring Darcs is, “Has
this work lead to the discovery of bugs in the existing source code?” The answer
is, “Yes!” This section highlights several of the defects and other improvements
we discovered as a direct result of refactoring the Darcs source to use witness
types. It is important to keep in mind that Darcs has been actively used and
developed since 2005 with a test suite containing over 100 test scripts, so many
bugs have already been discovered and fixed. Finding new bugs in the patch
manipulations is not an easy task. We include code coverage statistics generated
by the Haskell Program Coverage (HPC) toolkit [GR07] in Appendix D.

Each of the following sections outlines a benefit we achieved with a concrete
example.

5.3.1 Detection of Invalid Patch Sequence Manipulations

A prime example of where the witness types have ensured proper sequence
manipulations arose naturally while refactoring the source of the interactive
command for listing the change history of a repository.

The command line of Darcs supports an interactive view of changes. The
user is able to filter and select patches in the repository then step through the
changes in each patch. The format for the changes is the same format Darcs
uses to store and transfer patches, so a change that modifies a file would include
line numbers and the added or removed lines for the file.

The defect we found was that the filters were applied to the patch sequence
as if it were an ordinary list of patches. This has the unfortunate side effect
that when the changes are displayed adjacent changes may not be in adjacent

46 CHAPTER 5. DISCUSSION

contexts. If the patches to be removed were commuted out of the sequence in-
stead of removing patches from the sequence by filtering, then all the remaining
patches would have adjacent contexts.

One example where this bug might produce confusing output for the user is
when multiple patches in the history modify parts of a file but one or more of
the patches is removed due to filtering. The line numbers displayed to the user
could be very misleading. While most users might ignore the exact line numbers
in the output, interactions with other patch types, such as file renames, could
lead to serious confusion.

Given the nature of this bug, specifically that it does not cause any sort of
machine detectable corruption and it requires hard to craft examples, means
that it is very unlikely we would have discovered it through testing. Due to our
witness type refactor we were able to discover this defect before a single user
reported it.

5.3.2 Safe and General Functions

As an example of safe and general functions, we focus on get_choices and the
group of functions that it generalizes.

Originally the Darcs source code had four different functions for separating
a sequence of patches based on a user’s choices. For example, after the patches
are tagged we might want to separate the tagged patches at the start of the
sequence from the others. One way of separating the sequence is the following
function:

separate_first_from_middle_last :: Patchy p ⇒ PatchChoices p

→ ([TaggedPatch p], [TaggedPatch p])

There are three other functions like separate_first_from_middle_last, that have
the exact same type. Not only was it confusing to have four nearly identical
functions but because they have the same types, Haskell’s type system could
not help the programmer by catching accidental use of the wrong variant.

After implementing directed types, we were able to change to the following
type, that uses the type :> to express the relationship between patch contexts:

separate_first_from_middle_last :: Patchy p ⇒ PatchChoices p x z

→ (FL (TaggedPatch p) :> FL (TaggedPatch p)) x z

Our directed types further inspired our confidence in type safe refactoring
and lead us to a unified interface:

get_choices :: Patchy p ⇒ PatchChoices p x y

→ (FL (TaggedPatch p) :>

FL (TaggedPatch p) :>

FL (TaggedPatch p)) x y

Using get_choices we are able to safely partition the tagged patches and allow
the types to both constrain and document which portion is first, middle, and

5.3. REAL-WORLD IMPROVEMENTS 47

last. Using pattern matching the caller of get_choices can pick which part of
the tagged patches to focus on. Making this change, reduced the amount of
redundant code while providing a simpler interface for programmers working
with this code.

5.3.3 Detection of Defective Functions

Not all of the functions in the Darcs source code could be converted to use our
witness types. One such example was the rempatch function, which happened to
exist outside of the trusted kernel of patch sequence manipulation code.

rempatch :: RepoPatch p ⇒ Named p → PatchSet p → PatchSet p

The problem with rempatch was that it removed its first parameter from
a PatchSet. While refactoring the module that contained rempatch it quickly
became apparent that rempatch did not have a valid type in terms of context
manipulation. Fortunately, rempatch was no longer used anywhere in the source
code so it was removed.

While it might seem as though having an unused function is not a big con-
cern, in this case if rempatch had been used then repository history corruption
would have resulted. Thus, finding and removing this defective function, and
others like it, is extremely desirable.

5.3.4 Identification of Redundant Functions

As the number of lines of code grows in software projects it seems that there
is a tendency for developers to unintentionally reimplement existing function-
ality. One major problem with this trend is that it becomes harder to make
certain changes as all the redundant implementations may need to be found
and changed.

One of the hurdles to eliminating redundant functions from the Darcs source
code was that of determining exactly which patch manipulations were identical
and which ones were merely similar. By exposing patch contexts at the type
level the types serve as a form of documentation. A benefit of the extra doc-
umentation is the ability to more easily identify identical patch manipulations.
One such example was a function commute_by, which was defined outside of the
trusted kernel of patch manipulations.

Finding commute_by was easy, but there was a lack of confidence about which
variation of commute it represented. For example, the input parameters may have
been in a swapped order compared to the standard commuteFL function that it
was most similar to. After adding context types in the module where commute_by

was defined, it was very obvious that commute_by did indeed reverse the order
of the input parameters compared to commuteFL. Not only did the context types
make us aware that it was similar to commuteFL but having them also made it safe
to swap the parameters to commute_by in all the places it was called. If we had
not swapped the parameters correctly, then type checking would have failed.

48 CHAPTER 5. DISCUSSION

5.3.5 Writing New Code is Safer

An obvious expectation of improved type safety is that new code we write will
contain fewer bugs. Approximately half of the type witness changes were imple-
mented before Darcs 2.0 was completed. We found that writing new modules
from scratch to use our type witnesses was easier, safer and less error prone.
In fact, Camp [Lyn09], another Haskell version control system based on Patch
Theory, is now being written to use our witness types from the very beginning.

The Darcs mailing list, where developers share their contributions, now con-
tains discussions where developers have attempted to write new code or modify
existing code and discovered that the context types do not type check. This
usually results in the developer gaining a deeper understand of how to correctly
modify Darcs as well as preventing potential bugs [Pet08, Sit08, Sch08].

Chapter 6

Conclusion

We have shown that by combining advanced features of Haskell in clever ways
it is possible to use the static type checker of GHC to make Darcs more robust
and safer to modify. Our approach also leads to source code which is better
documented.

The techniques we use are not common or mainstream practice within the
Haskell community and for this reason require training. This is a potential
drawback considering that Haskell itself is not a mainstream language to begin
with. In practice this may not be as bad as it sounds. The majority of the Darcs
source code which uses the techniques discussed here, is contained in the inner
most core of Darcs. Only contributors who work on the inner workings of Darcs
need to fully understand these techniques. In practice developers who work on
the core of Darcs are few already and training them to use our techniques has
not been a problem.

The drawbacks to our approach seem acceptable in light of the advantages.
For example, several defects were uncovered while changing the code to use our
techniques. Our approach also continues to prevent specific classes of new de-
fects from entering the code base while serving a complementary role to testing.
Our work on Darcs, as an Open Source project, demonstrates that automated
theorem proving has real applications in software development.

Finally, our approach could be used in any Haskell program that needs to
respect chains of transformations and the manipulation of those transformations.

49

Bibliography

[Bit09] BitMover. Bitkeeper. on-line, March 2009. http://www.bitkeeper.
com/.

[BS02] Arthur I. Baars and Doaitse D. Swierstra. Typing dynamic typing. In
ICFP ’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, volume 37, pages 157–166.
ACM Press, September 2002.

[Buc09] Bjorn Buckwalter. Dimensional. on-line, March 2009. http://code.
google.com/p/dimensional/.

[Can09] Canonical Ltd. Bazaar. on-line, March 2009. http://bazaar-vcs.
org/.

[CH03] James Cheney and Ralf Hinze. Phantom types, 2003.

[CX03] Chiyan Chen and Hongwei Xi. Implementing typeful program trans-
formations. In PEPM ’03: Proceedings of the 2003 ACM SIGPLAN
workshop on Partial evaluation and semantics-based program manip-
ulation, pages 20–28, New York, NY, USA, 2003. ACM.

[Den09] Aaron Denney. Dimensionalized numbers. on-line, March
2009. http://www.haskell.org/haskellwiki/Dimensionalized_
numbers.

[Eat06] Frederik Eaton. Statically typed linear algebra in haskell. In Haskell
’06: Proceedings of the 2006 ACM SIGPLAN workshop on Haskell,
pages 120–121, New York, NY, USA, 2006. ACM.

[FI00] Daniel Fridlender and Mia Indrika. Do we need dependent types?
Journal of Functional Programming, 10:409–415, 2000.

[Fre09] Free Software Foundation. Concurrent versions system. on-line,
March 2009. http://www.nongnu.org/cvs/.

[GHC09a] GHC. 6.6. observing code coverage. on-line, March
2009. http://www.haskell.org/ghc/docs/latest/html/users_
guide/hpc.html.

50

http://www.bitkeeper.com/
http://www.bitkeeper.com/
http://code.google.com/p/dimensional/
http://code.google.com/p/dimensional/
http://bazaar-vcs.org/
http://bazaar-vcs.org/
http://www.haskell.org/haskellwiki/Dimensionalized_numbers
http://www.haskell.org/haskellwiki/Dimensionalized_numbers
http://www.nongnu.org/cvs/
http://www.haskell.org/ghc/docs/latest/html/users_guide/hpc.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/hpc.html

BIBLIOGRAPHY 51

[GHC09b] GHC. Ghc manual, section 8.4.4. existentially quantified data
constructors. on-line, March 2009. http://haskell.org/
ghc/docs/latest/html/users_guide/data-type-extensions.
html#existential-quantification.

[GHC09c] GHC. The glasgow haskell compiler. on-line, March 2009. http:
//haskell.org/ghc.

[GM08] Louis-Julien Guillemette and Stefan Monnier. A type-preserving
compiler in haskell. In ICFP ’08: Proceeding of the 13th ACM SIG-
PLAN international conference on Functional programming, pages
75–86, New York, NY, USA, 2008. ACM.

[GR07] Andy Gill and Colin Runciman. Haskell program coverage. In Haskell
’07: Proceedings of the ACM SIGPLAN workshop on Haskell work-
shop, pages 1–12, New York, NY, USA, 2007. ACM.

[Gre08] Gabor Greif. Thrists: Dominoes of data. on-line, July 2008. http:
//www.opendylan.org/~gabor/Thrist-draft-2008-07-18.pdf.

[Hal01] Thomas Hallgren. Fun with functional dependencies. In Proceedings
of the Joint CS/CE Winter Meeting, pages 135–145, Gteborg, Swe-
den, January 2001. Department of Computing Science, Chalmers.

[Hin01] Ralf Hinze. Manufacturing datatypes. Journal of Functional Pro-
gramming, 11(5):493–524, 2001.

[Jon00] Mark P. Jones. Type classes with functional dependencies. In ESOP
’00: Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230–244, London, UK, 2000. Springer-
Verlag.

[Kah01] Stefan Kahrs. Red-black trees with types. J. Funct. Program.,
11(4):425–432, 2001.

[Kis09] Oleg Kiselyov. Typeable makes haskell98 unsound. on-
line, March 2009. http://okmij.org/ftp/Haskell/types.
html#unsound-typeable.

[KLS04] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell ’04: Proceedings of the 2004
ACM SIGPLAN workshop on Haskell, pages 96–107, New York, NY,
USA, 2004. ACM.

[KR05] Andrew Kennedy and Claudio V. Russo. Generalized algebraic data
types and object-oriented programming. In OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object ori-
ented programming systems languages and applications, pages 21–40,
New York, NY, USA, 2005. ACM Press.

http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://haskell.org/ghc
http://haskell.org/ghc
http://www.opendylan.org/~gabor/Thrist-draft-2008-07-18.pdf
http://www.opendylan.org/~gabor/Thrist-draft-2008-07-18.pdf
http://okmij.org/ftp/Haskell/types.html#unsound-typeable
http://okmij.org/ftp/Haskell/types.html#unsound-typeable

52 BIBLIOGRAPHY

[KS04] Oleg Kiselyov and Chung-chieh Shan. Functional pearl: implicit
configurations–or, type classes reflect the values of types. In Haskell
’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 33–44, New York, NY, USA, 2004. ACM.

[KS07] Oleg Kiselyov and Chung-chieh Shan. Lightweight static capabilities.
Electron. Notes Theor. Comput. Sci., 174(7):79–104, 2007.

[LM99] Daan Leijen and Erik Meijer. Domain specific embedded compilers.
In PLAN ’99: Proceedings of the 2nd conference on Domain-specific
languages, pages 109–122, New York, NY, USA, 1999. ACM.

[LO94] Konstantin Läufer and Martin Odersky. Polymorphic type infer-
ence and abstract data types. ACM Trans. Program. Lang. Syst.,
16(5):1411–1430, 1994.

[Lyn09] Ian Lynagh. Camp. on-line, March 2009. http://projects.
haskell.org/camp/.

[McB02] Conor McBride. Faking it simulating dependent types in haskell.
Journal of Functional Programming, 12(5):375–392, 2002.

[McK06] James McKinna. Why dependent types matter. SIGPLAN Not.,
41(1):1–1, 2006.

[Mic09] Microsoft. Visual sourcesafe. on-line, March 2009. http://msdn.
microsoft.com/en-us/vstudio/aa700900.aspx.

[Mon09] Monotone. Monotone. on-line, March 2009. http://monotone.ca/.

[Oka99] Chris Okasaki. From fast exponentiation to square matrices: an ad-
venture in types. In ICFP ’99: Proceedings of the fourth ACM SIG-
PLAN international conference on Functional programming, pages
28–35, New York, NY, USA, 1999. ACM.

[Per09] Perforce Software. Perforce. on-line, March 2009. http://www.
perforce.com/.

[Pet08] Tommy Pettersson. [darcs-users] darcs patch: resolve issue1111:
use correct side of return from partitionrl. on-line, Octo-
ber 2008. http://lists.osuosl.org/pipermail/darcs-users/
2008-October/014272.html.

[Pey03] Simon Peyton-Jones. Haskell 98 Language and Libraries: The Re-
vised Report. Cambridge University Press, May 2003.

[PVWS07] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. J.
Funct. Program., 17(1):1–82, 2007.

http://projects.haskell.org/camp/
http://projects.haskell.org/camp/
http://msdn.microsoft.com/en-us/vstudio/aa700900.aspx
http://msdn.microsoft.com/en-us/vstudio/aa700900.aspx
http://monotone.ca/
http://www.perforce.com/
http://www.perforce.com/
http://lists.osuosl.org/pipermail/darcs-users/2008-October/014272.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/014272.html

BIBLIOGRAPHY 53

[PVWW06] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
gadts. In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN
international conference on Functional programming, pages 50–61,
New York, NY, USA, 2006. ACM Press.

[Rot02] J.J. Rotman. Advanced modern algebra. Prentice Hall Upper Saddle
River, NJ, 2002.

[Rou06a] David Roundy. Implementing the darcs patch formalism. . . and ver-
ifying it. on-line, February 2006. http://physics.oregonstate.
edu/~roundyd/talks/fosdem2006.pdf.

[Rou06b] David Roundy. Verifying the darcs patch code. on-line, Novem-
ber 2006. http://physics.oregonstate.edu/~roundyd/talks/
cs_colloquiem.pdf.

[Rou08] David Roundy. Verifying the darcs patch code. on-line, Octo-
ber 2008. http://physics.oregonstate.edu/~roundyd/talks/
droundy-08.pdf.

[Rou09a] David Roundy. on-line, March 2009. http://darcs.net/.

[Rou09b] David Roundy. Darcs user manual. on-line, March 2009. http:
//darcs.net/manual/.

[Rou09c] David Roundy. Theory of patches. on-line, March 2009. http:
//darcs.net/manual/node9.html.

[Sch08] Benedikt Schmidt. [darcs-users] darcs patch: use read repo
instead of get unrecorded in changes. on-line, October
2008. http://lists.osuosl.org/pipermail/darcs-users/
2008-October/015131.html.

[Sel09] Selenic Consulting. Mercurial. on-line, March 2009. http://www.
selenic.com/mercurial/wiki/.

[Sha04] Chung-chieh Shan. Sexy types in action. SIGPLAN Not., 39(5):15–
22, 2004.

[She05] Tim Sheard. Putting curry-howard to work. In Haskell ’05: Proceed-
ings of the 2005 ACM SIGPLAN workshop on Haskell, pages 74–85,
New York, NY, USA, 2005. ACM.

[Sit08] Ganesh Sittampalam. [darcs-users] darcs patch: rewrite par-
titionfl and partitionrl to reduce the numb... on-line, Octo-
ber 2008. http://lists.osuosl.org/pipermail/darcs-users/
2008-October/015251.html.

http://physics.oregonstate.edu/~roundyd/talks/fosdem2006.pdf
http://physics.oregonstate.edu/~roundyd/talks/fosdem2006.pdf
http://physics.oregonstate.edu/~roundyd/talks/cs_colloquiem.pdf
http://physics.oregonstate.edu/~roundyd/talks/cs_colloquiem.pdf
http://physics.oregonstate.edu/~roundyd/talks/droundy-08.pdf
http://physics.oregonstate.edu/~roundyd/talks/droundy-08.pdf
http://darcs.net/
http://darcs.net/manual/
http://darcs.net/manual/
http://darcs.net/manual/node9.html
http://darcs.net/manual/node9.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015131.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015131.html
http://www.selenic.com/mercurial/wiki/
http://www.selenic.com/mercurial/wiki/
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015251.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015251.html

54 BIBLIOGRAPHY

[SS00] Christian Skalka and Scott Smith. Static enforcement of security
with types. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, pages 34–45,
New York, NY, USA, 2000. ACM.

[Sto05] Mark Stosberg. Interview with david roundy of darcs on source con-
trol. OSDir News, 2005. http://osdir.com/Article2571.phtml.

[SV06] Alexandra Silva and Joost Visser. Strong types for relational
databases. In Haskell ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Haskell, pages 25–36, New York, NY, USA, 2006. ACM.

[Tig09] Tigris. Subversion. on-line, March 2009. http://subversion.
tigris.org/.

[Tor09] Linus Torvalds. Git. on-line, March 2009. http://git-scm.com/.

[VWP06] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton-Jones.
Boxy types: inference for higher-rank types and impredicativity. In
ICFP ’06: Proceedings of the eleventh ACM SIGPLAN international
conference on Functional programming, pages 251–262, New York,
NY, USA, 2006. ACM.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In POPL ’03: Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 224–235, New York, NY, USA, 2003. ACM.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. SIGPLAN Not., 33(5):249–257, 1998.

[XS99] Hongwei Xi and Dana Scott. Dependent types in practical program-
ming. In In Proceedings of ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 214–227. ACM Press, 1999.

http://osdir.com/Article2571.phtml
http://subversion.tigris.org/
http://subversion.tigris.org/
http://git-scm.com/

Appendix A

Existentially Quantified
Types

Existentially quantified types are an extension to Haskell which allows for greater
polymorphism and more expressive types [LO94, Kah01, Sha04, PVWS07]. In
Haskell no special keyword, other than universal quantification, is needed as
explained in the GHC user manual [GHC09b].

The simplest example of existential quantification is below, where the type
variable x is existentially quantified:

data Exists = forall x. Exists x

Using the Exists data constructor the type x is hidden inside the Exists type.
Using Exists we could put different types in a list:

[Exists 1, Exists "hello", Exists 'a']

The list has type [Exists] and the type of each element is hidden in the
Exists data constructor. Once a value of type x has been wrapped inside the
Exists type we can recover it through pattern matching, but at that point the
type system only knows that a valid type x once existed in that spot and so it
instantiates a new distinct type, or eigenvariable, as a place holder for x. If we
try to return a value with an eigenvariable as the type, then the checker will
complain. Thus, once a value has been wrapped in the Exists data constructor
we can no longer expose it to a higher level of scope. Although we can pass it
to polymorphic functions.

For functions that we want to apply to the value stored in the Exists type
we have the following:

mapExists :: (forall x. x → x) → Exists → Exists

mapExists f (Exists x) = Exists (f x)

The function passed to mapExists may modify only the value stored in the
Exists type but not the existentially bound type. Given the example above

55

56 APPENDIX A. EXISTENTIALLY QUANTIFIED TYPES

there are very few functions we could pass to mapExists, the identity function
id :: a → a is one such function.

Any function which tries to make use of this existentially quantified type
variable will not be allowed. To allow ourselves to manipulate the values inside
the Exists constructor we can use type classes. By placing type class constraints
on the existentially quantified type variable we ensure that certain operations—
those defined by the type class—are permitted.

For example, if we would like restrict the types which can be wrapped in
the Exists data constructor to types that can be shown using the standard Show

type class, then we would define the following:

data Exists = forall x. Show x ⇒ Exists x

By combining type class constraints we can do more interesting operations
on otherwise arbitrary extensionally quantified types.

Appendix B

Generalized Algebraic Data
Types (GADTs)

Generalized Algebraic Data Types (GADTs) [XCC03, PVWW06, CH03] extend
the power of standard Haskell data types with while providing a convenient
syntax that is similar to the syntax for giving type signatures.

The example of existentially quantified types in Appendix A could have been
given in GADT syntax as follows:

data Exists where

Exists :: x → Exists

Although it should be noted that the above definition does not make use of
the generalized nature of GADTs. In the GADT syntax each data constructor
is specified using the same notation that is used to give function type signatures.
This allows us to easily and naturally create data constructors with interesting
types.

For example consider the following container type, which does take advan-
tage of the generalization provided by GADTs:

data Container a where

IntContainer :: Int → Container Int

CharContainer :: Char → Container Char

StringContainer :: String → Container String

We can tell by inspection that any value of type Container a will hold either
Int, Char, or String.

We could write a function such as the following:

contents :: Container a → a

contents (IntContainer i) = i

contents (CharContainer c) = c

contents (StringContainer s) = s

57

58 APPENDIX B. GENERALIZED ALGEBRAIC DATA TYPES (GADTS)

When have a value of type Container a we know the only possible types for
a are Int, Char and String but do not know which one we have until we examine
the value such as with a pattern match or a case-expression. The type system
treats the type variable a as being any type. In this way, GADTs are similar
to type classes, except they are closed and a pattern match allows us to know
exactly the type of a.

The syntax for GADTs is very flexible and allows us to combine existential
quantification and phantom types. For example:

data Example a where

Exists :: Int → x → Example Int

Phantom :: Int → Example a

In the Phantom constructor the type variable a remains a phantom type, while
in the constructor Exists the type variable x is existentially quantified, and the
type variable a has the type Int associated with it so it is not a phantom type.

Appendix C

Directed Type Examples

The following examples show how directed lists can be used to store functions
where the types correspond to the domain and range of the functions.

The examples here use the following data type declarations for forward pairs,
reverse pairs, forward lists and reverse lists respectively. Each of following defi-
nitions is also discussed in Chapter 4.

We have directed pairs:

data (a1 :> a2) x y = forall z. (a1 x z) :> (a2 z y) -- forward pair

data (a1 :< a2) x y = forall z. (a1 z y) :< (a2 x z) -- reverse pair

Forward lists:

data FL a x z where

(:>:) :: a x y → FL a y z → FL a x z

NilFL :: FL a x x

Reverse lists:

data RL a x z where

(:<:) :: a y z → RL a x y → RL a x z

NilRL :: RL a x x

We refer to the types above as being directed because of the type relation-
ships expressed in each data constructor.

C.1 Functions

We are specifically interested in storing transformations in our forward lists, so
the description here assumes that the element type a has a domain and range
assosciated with it. For example, consider the Haskell functions chr :: Int →
Char, ord :: Char → Int and toUpper :: Char → Char; the first two map between

59

60 APPENDIX C. DIRECTED TYPE EXAMPLES

numeric values and characters and the last converts characters to their upper-
cased version. In Haskell, function types are created with the type constructor
→. For example, we could place the chr function at the front of a forward list,
which would look like this:

chr :>: NilFL

and have the type, FL (→) Int Char. We could continue in this way by adding
the function ord to the front of the list to get,

ord :>: chr :>: NilFL :: FL (→) Char Char.

We could imagine writing a function apply with type, apply :: FL (→) x y → x

→ y, with the following definition:

apply NilFL x = x

apply (a:>:as) x = apply as (a x)

Then, we could take the forward list, chr :>: toUpper :>: ord :>: NilFL and
apply it to numeric value of the character 'a', to find out the character code for
'A', as follows:

apply (chr :>: toUpper :>: ord :>: NilFL) 97 =⇒ 65

If we try to construct an invalid sequence of function applications where the
domains and ranges of the functions are not compatible we will get a type error,
such as this example from an interactive session with GHC:

Prelude Data.Char Darcs.Patch.Ordered> chr :>: ord :>: toUpper :>: NilFL

<interactive>:1:16:
Couldn’t match expected type ‘Int’ against inferred type ‘Char’

Expected type: Int -> y
Inferred type: Char -> Char

In the first argument of ‘(:>:)’, namely ‘toUpper’
In the second argument of ‘(:>:)’, namely ‘toUpper :>: NilFL’

And a corresponding rapply, as follows:

rapply :: RL (→) x y → x → y

rapply NilRL x = x

rapply (a:<:as) x = a (rapply as x)

Which would be equivalent to the apply example as follows:

rapply (ord :<: toUpper :<: chr :<: NilRL) 97 =⇒ 65

Equivalently, we could define reverseRL, that reverses a reverse list by creating
the corresponding forward list, and give this alternate definition of rapply:

reverseRL :: RL a x z → FL a x z

reverseRL xs = r NilFL xs

where r :: FL a m o → RL a l m → FL a l o

C.2. FILTERING 61

r ls NilRL = ls

r ls (a:<:as) = r (a:>:ls) as

rapply :: RL (→) x y → x → y

rapply rl x = apply (reverseRL rl) x

C.2 Filtering

The standard Haskell libraries define a filter function for lists with the type,
filter :: (a → Bool) → [a] → [a]. This filter function returns all the elements
of the input list for which the first parameter of filter returns True. We sometimes
want a similar functon for forward lists, filterFL, but what should the type be?

filterFL :: (forall x y. p x y → EqCheck x y) → FL p w z → FL p w z

The above type requires our EqCheck type. Discussed earlier in Section 4.2.
This gives us a way to remove elements from the forward list when the

elements behave as the identity transformation on their type parameters, eg.
elements of type p x x. This gives us a simplified way to ensure the forward list
is still valid after elements are removed. More complex rules could be used to
remove elements, such as removing sub-sequences with type FL p x x in a more
general implementation of filterFL.

C.3 Zipping

Another interesting case is the Haskell standard library function, zipWith, which
has the following standard type and definition:

zipWith :: (a → b → c) → [a] → [b] → [c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

The standard zipWith function applies a user supplied function pairwise to
the elements of two lists. The resulting list is only as long as the shorter of the
two input lists. For forward lists, we must take into consideration the order of
the elements in the forward list. We use the following type and definition for
our zipWithFL:

zipWithFL :: (forall x y a. → p x y → q x y)

→ [a] → FL p w z → FL q w z

zipWithFL f (x:xs) (y :>: ys) = f x y :>: zipWithFL f xs ys

zipWithFL _ _ NilFL = NilFL

zipWithFL _ [] (_:>:_) = bug "zipWithFL called with too short a list"

62 APPENDIX C. DIRECTED TYPE EXAMPLES

Here we combine a standard Haskell list with the elements of a forward list.
The following function is not one we use in practice, but going over the

derivation of the definition is illustrative of the challenges involved in putting
forward lists to use.

Imagine if we wanted to define zipWithFL so that it operated on two forward
lists instead of one list and one forward list. If we ignore for a moment the
difficulty of defining the function parameter, then we might try the following
incorrect definition:

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a q z → FL b j k → FL c m n

zipWithFL f (a :>: as) (b :>: bs) = f a b :>: zipWithFL f as bs

zipWithFL _ _ _ = NilFL

This would almost work, but it turns out that since NilFL requires that
the type witnesses be the same, eg., NilFL :: FL a x x, we get a type error in
the second case, because it would require that n and m be the same type and
consequently q, z, j and k must all be the same type. One way to express this
is to change the last case to check for explicit NilFL in each input list.

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a m n → FL b m n → FL c m n

zipWithFL f (a :>: as) (b :>: bs) = f a b :>: zipWithFL f as bs

zipWithFL _ NilFL NilFL = NilFL

zipWithFL _ _ _ = error "zipWithFL: Input lists are not the same length"

We add the last case to catch an unwanted input case, and we update the
type signature to reflect the relationship of the types q, z, j, k, m and n. The
NilFL in the second and third parameter will tell the type checker that m = n for
that case, but also relies on the next observation.

In order to tell the type system that m and n are equal, we need to either use
an EqCheck or pattern match on NilFL for a value that shares type information
with the returned value. This is why we update the phantom types of the two
input list parameters to be the same as the returned list. Now when we pattern
match on NilFL, the type system knows m = n and expects us to return a list in
which the phantom types are equal. It also implies that the phantoms must be
m and n instead of some new phantom types.

The above type signature will not type check. If we tried to give the above
definition to the type checker, then we would see that there is a problem with
applying zipWithFL at the tail of each list. When we pattern patch on the left-
hand side in the first case the existentially quantified type variable y in the
definition of the data constructor, :>:, is bound to distinct types in each list.
The problem is that we now require that both input lists have equal phantoms
but the distinct types bound by the existential quantification cannot be equal.
To work around this, we would need to use a type equality check, such as (=\/=).
In fact, we define a type equality check using this operator in Section 4.10. For
now, suppose that we have a function, (=\/=) :: a r s → a r v → EqCheck s v,

C.4. STANDARD OPERATIONS 63

that gives us an EqCheck type witness that represents when the types s and v are
equal:

zipWithFL :: (forall r s u v x y. a r s → a u v → c x y)

→ FL a m n → FL a m n → FL c m n

zipWithFL f (a :>: as) (b :>: bs) =

case a =\/= b of

IsEq → f a b :>: zipWithFL f as bs

_ → error "zipWithFL: Input lists are not parallel"

zipWithFL _ NilFL NilFL = NilFL

zipWithFL _ _ _ = error "zipWithFL: Input lists are not the same length"

Using (=\/=) requires that the element types of the input lists are the same
and we update our type signature. The above version will finally type check.
The above may not be as general as we could have hoped and is also not the
best definition if we are most interested in compile time guarantees. We have
two very easy ways to make the above function fail at run-time. We could
change both errors to a normal value by returning Nothing in those cases and
switching the return type to Maybe (FL c m n), but this adds very little other than
acknowledging the failure cases. We have not bothered to do this as this is not
a function that we found useful in practice. Although, deriving it provides a
rather colorful example of how our techniques can complicate the definition of
traditional list processing functions.

It is also important to note that changing the type of the input function is
not enough to avoid the need for (=\/=). For example, this will not type check:

zipWithFL :: (forall r s. a r s → a r s → c r s)

→ FL a m n → FL a m n → FL c m n

zipWithFL f (a :>: as) (b :>: bs) = f a b :>: zipWithFL f as bs

zipWithFL _ NilFL NilFL = NilFL

zipWithFL _ _ _ = error "zipWithFL: Input lists are not the same length"

We still fail to because the type checker cannot unify the existentially quan-
tified type inside the constructor, (:>:), of the two forward lists.

C.4 Standard Operations

Several standard list manipulations have proven useful for forward and reverse
lists. For example, we have defined the following functions for forward and
reverse lists, but here only the name and type of our forward list implementation
is listed:

lengthFL :: FL a x z → Int

mapFL :: (forall w z. a w z → b) → FL a x y → [b]

mapFL_FL :: (forall w y. a w y → b w y) → FL a x z → FL b x z

spanFL :: (forall w y. a w y → Bool) → FL a x z → (FL a :> FL a) x z

64 APPENDIX C. DIRECTED TYPE EXAMPLES

foldlFL :: (forall w y. a → b w y → a) → a → FL b x z → a

allFL :: (forall x y. a x y → Bool) → FL a w z → Bool

splitAtFL :: Int → FL a x z → (FL a :> FL a) x z

(+>+) :: FL a x y → FL a y z → FL a x z -- Corresponds to (++)

nullFL :: FL a x z → Bool

concatFL :: FL (FL a) x z → FL a x z

We have two types of map defined for forward lists. One map results in a
standard Haskell list type and the other map, mapFL_FL is for the case where the
resulting list is still a forward list. Missing from the above list are functions
where element comparison must be performed.

Appendix D

Program Coverage

We use the Haskell Program Coverage (HPC) toolkit [GR07] that comes with
GHC 6.8 [GHC09a], and newer, to generate statistics about program coverage
from running the Darcs test suite. The statistics listed in this Appendix are
from October 2008. Of the top level definitions in the Darcs source code, 1985
out of 2513 definitions were covered, or about 78% of the definitions. For con-
ditional control flows, or alternatives, 3072 of 5153 were covered, or about 59%
of the alternatives. At the expression level 37947 out of 57245, about 66%, were
covered by the tests. For a break down of coverage by module see Table D.1.

Table D.1: Test Suite Coverage of Darcs By Module, October 2008

Coverage Type
Top Level Alternatives Expressions

Module Name Fraction (%a) Fraction (%a) Fraction (%a)
CommandLine 12/14 (85) 0/4 (0) 98/165 (59)
Crypt.SHA256 1/1 (100) 4/4 (100) 58/58 (100)
Darcs.ArgumentDefaults 3/3 (100) 15/16 (93) 101/102 (99)
Darcs.Arguments 150/161 (93) 144/279 (51) 1739/2246 (77)
Darcs.Bug 4/5 (80) 5/9 (55) 55/86 (63)
Darcs.CheckFileSystem 3/3 (100) 1/2 (50) 54/66 (81)
Darcs.ColorPrinter 15/27 (55) 25/65 (38) 262/468 (55)
Darcs.Commands 24/29 (82) 73/99 (73) 633/963 (65)
Darcs.Commands.Add 11/12 (91) 33/48 (68) 401/512 (78)
Darcs.Commands.AmendRecord 6/7 (85) 13/28 (46) 216/260 (83)
Darcs.Commands.Annotate 16/21 (76) 33/96 (34) 341/964 (35)
Darcs.Commands.Apply 7/13 (53) 11/54 (20) 198/549 (36)
Darcs.Commands.Changes 9/10 (90) 30/54 (55) 361/529 (68)
Darcs.Commands.Check 6/6 (100) 9/16 (56) 120/208 (57)
Darcs.Commands.Convert 3/6 (50) 0/35 (0) 27/498 (5)
Darcs.Commands.Diff 9/9 (100) 22/31 (70) 240/322 (74)
aAll percentages are truncated to integers by rounding down. Continued on next page

65

66 APPENDIX D. PROGRAM COVERAGE

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.Commands.Dist 6/6 (100) 5/9 (55) 132/164 (80)
Darcs.Commands.Get 11/11 (100) 36/44 (81) 508/634 (80)
Darcs.Commands.Help 4/6 (66) 0/9 (0) 21/78 (26)
Darcs.Commands.Init 4/4 (100) 0/0 (–) 24/26 (92)
Darcs.Commands.MarkConflicts 5/5 (100) 5/6 (83) 78/121 (64)
Darcs.Commands.Mv 9/11 (81) 22/28 (78) 322/392 (82)
Darcs.Commands.Optimize 15/18 (83) 21/40 (52) 298/448 (66)
Darcs.Commands.Pull 5/5 (100) 16/19 (84) 342/371 (92)
Darcs.Commands.Push 5/5 (100) 12/28 (42) 216/365 (59)
Darcs.Commands.Put 4/5 (80) 12/21 (57) 160/248 (64)
Darcs.Commands.Record 13/15 (86) 44/78 (56) 551/752 (73)
Darcs.Commands.Remove 7/9 (77) 8/10 (80) 121/167 (72)
Darcs.Commands.Repair 6/7 (85) 12/18 (66) 184/282 (65)
Darcs.Commands.Replace 7/8 (87) 10/20 (50) 191/293 (65)
Darcs.Commands.Revert 4/4 (100) 9/12 (75) 147/175 (84)
Darcs.Commands.Rollback 4/4 (100) 3/4 (75) 176/260 (67)
Darcs.Commands.Send 12/12 (100) 39/58 (67) 538/711 (75)
Darcs.Commands.SetPref 5/5 (100) 3/4 (75) 83/126 (65)
Darcs.Commands.Show 5/5 (100) 0/0 (–) 30/30 (100)
Darcs.Commands.ShowAuthors 3/4 (75) 2/2 (100) 62/69 (89)
Darcs.Commands.ShowBug 2/4 (50) 0/0 (–) 19/28 (67)
Darcs.Commands.ShowContents 3/4 (75) 2/2 (100) 62/72 (86)
Darcs.Commands.ShowFiles 7/8 (87) 6/8 (75) 60/77 (77)
Darcs.Commands.ShowRepo 12/15 (80) 1/6 (16) 165/237 (69)
Darcs.Commands.ShowTags 3/4 (75) 5/8 (62) 50/81 (61)
Darcs.Commands.Tag 5/5 (100) 4/7 (57) 90/106 (84)
Darcs.Commands.TrackDown 5/5 (100) 5/8 (62) 97/140 (69)
Darcs.Commands.TransferMode 1/6 (16) 0/2 (0) 2/74 (2)
Darcs.Commands.Unrecord 14/17 (82) 9/15 (60) 241/330 (73)
Darcs.Commands.Unrevert 6/6 (100) 8/12 (66) 144/187 (77)
Darcs.Commands.WhatsNew 4/4 (100) 10/14 (71) 205/253 (81)
Darcs.CommandsAux 3/4 (75) 1/2 (50) 34/44 (77)
Darcs.Compat 4/6 (66) 2/16 (12) 50/190 (26)
Darcs.Diff 17/17 (100) 54/71 (76) 588/680 (86)
Darcs.Email 5/7 (71) 9/24 (37) 214/460 (46)
Darcs.External 32/56 (57) 40/130 (30) 630/1869 (33)
Darcs.FilePathMonad 11/19 (57) 0/4 (0) 67/175 (38)
Darcs.FilePathUtils 4/5 (80) 6/19 (31) 50/108 (46)
Darcs.Flags 2/2 (100) 3/5 (60) 8/11 (72)
Darcs.Global 18/20 (90) 1/2 (50) 92/131 (70)
Darcs.Hopefully 26/37 (70) 13/26 (50) 130/268 (48)
aAll percentages are truncated to integers by rounding down. Continued on next page

67

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.IO 43/72 (59) 9/20 (45) 296/543 (54)
Darcs.Lock 29/33 (87) 19/37 (51) 420/570 (73)
Darcs.Match 43/47 (91) 103/156 (66) 550/860 (63)
Darcs.Ordered 31/46 (67) 57/78 (73) 224/328 (68)
Darcs.Patch 0/0 (–) 0/0 (–) 0/0 (–)
Darcs.Patch.Apply 22/24 (91) 91/155 (58) 689/1140 (60)
Darcs.Patch.Bundle 11/14 (78) 18/39 (46) 194/352 (55)
Darcs.Patch.Choices 30/40 (75) 38/46 (82) 345/455 (75)
Darcs.Patch.Commute 54/67 (80) 131/190 (68) 991/1392 (71)
Darcs.Patch.Core 12/18 (66) 6/15 (40) 49/88 (55)
Darcs.Patch.Depends 21/24 (87) 84/125 (67) 710/1111 (63)
Darcs.Patch.Info 24/36 (66) 29/67 (43) 484/649 (74)
Darcs.Patch.Match 18/21 (85) 3/4 (75) 218/308 (70)
Darcs.Patch.MatchData 1/2 (50) 0/0 (–) 2/6 (33)
Darcs.Patch.Non 17/24 (70) 19/33 (57) 193/315 (61)
Darcs.Patch.Patchy 26/36 (72) 38/45 (84) 306/417 (73)
Darcs.Patch.Permutations 16/23 (69) 39/57 (68) 288/383 (75)
Darcs.Patch.Prim 93/127 (73) 188/312 (60) 1442/2329 (61)
Darcs.Patch.Read 21/23 (91) 32/45 (71) 472/574 (82)
Darcs.Patch.ReadMonads 10/20 (50) 6/16 (37) 75/156 (48)
Darcs.Patch.Real 46/58 (79) 130/221 (58) 1267/1913 (66)
Darcs.Patch.Set 0/0 (–) 0/0 (–) 0/0 (–)
Darcs.Patch.Show 3/4 (75) 4/5 (80) 52/61 (85)
Darcs.Patch.TouchesFiles 6/6 (100) 25/32 (78) 147/170 (86)
Darcs.Patch.Viewing 20/34 (58) 65/129 (50) 554/1088 (50)
Darcs.Population 8/11 (72) 13/31 (41) 161/299 (53)
Darcs.PopulationData 1/9 (11) 1/16 (6) 1/123 (0)
Darcs.PrintPatch 2/4 (50) 0/0 (–) 11/22 (50)
Darcs.Progress 29/30 (96) 44/55 (80) 453/552 (82)
Darcs.RemoteApply 4/8 (50) 6/15 (40) 34/126 (26)
Darcs.RepoPath 23/35 (65) 28/35 (80) 238/271 (87)
Darcs.Repository 9/10 (90) 25/34 (73) 404/521 (77)
Darcs.Repository.ApplyPatches 2/2 (100) 2/2 (100) 25/47 (53)
Darcs.Repository.Cache 23/23 (100) 49/62 (79) 545/696 (78)
Darcs.Repository.Checkpoint 12/12 (100) 16/22 (72) 286/331 (86)
Darcs.Repository.DarcsRepo 20/21 (95) 18/28 (64) 549/665 (82)
Darcs.Repository.Format 14/15 (93) 19/28 (67) 222/281 (79)
Darcs.Repository.HashedIO 27/44 (61) 40/80 (50) 714/1067 (66)
Darcs.Repository.HashedRepo 37/38 (97) 42/55 (76) 861/1002 (85)
Darcs.Repository.Internal 75/85 (88) 159/199 (79) 1846/2204 (83)
Darcs.Repository.InternalTypes 1/1 (100) 0/0 (–) 1/1 (100)
aAll percentages are truncated to integers by rounding down. Continued on next page

68 APPENDIX D. PROGRAM COVERAGE

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.Repository.Motd 2/2 (100) 0/0 (–) 31/31 (100)
Darcs.Repository.Prefs 24/26 (92) 47/66 (71) 645/739 (87)
Darcs.Repository.Pristine 15/20 (75) 27/56 (48) 212/369 (57)
Darcs.Resolution 3/7 (42) 4/11 (36) 41/247 (16)
Darcs.Sealed 11/18 (61) 0/0 (–) 22/66 (33)
Darcs.SelectChanges 32/44 (72) 62/138 (44) 773/1575 (49)
Darcs.Show 0/6 (0) 0/0 (–) 0/36 (0)
Darcs.SignalHandler 9/10 (90) 6/24 (25) 99/238 (41)
Darcs.SlurpDirectory 89/95 (93) 123/170 (72) 953/1263 (75)
Darcs.Test 6/6 (100) 20/24 (83) 148/180 (82)
Darcs.TheCommands 1/1 (100) 0/0 (–) 89/95 (93)
Darcs.URL 6/6 (100) 7/10 (70) 35/49 (71)
Darcs.Utils 23/33 (69) 21/35 (60) 312/434 (71)
DateMatcher 9/9 (100) 12/16 (75) 215/242 (88)
English 5/5 (100) 3/4 (75) 26/31 (83)
Exec 5/5 (100) 5/9 (55) 82/125 (65)
FastPackedString 57/64 (89) 44/55 (80) 766/888 (86)
FileName 23/24 (95) 38/45 (84) 236/271 (87)
HTTP 2/6 (33) 2/14 (14) 28/187 (14)
IsoDate 41/56 (73) 21/43 (48) 1194/1795 (66)
Lcs 33/33 (100) 92/122 (75) 1444/1867 (77)
OldDate 4/30 (13) 4/37 (10) 120/915 (13)
Printer 59/69 (85) 38/41 (92) 437/478 (91)
RegChars 5/5 (100) 6/15 (40) 37/87 (42)
SHA1 8/8 (100) 8/8 (100) 1062/1063 (99)
Ssh 10/19 (52) 10/44 (22) 172/638 (26)
ThisVersion 1/1 (100) 0/0 (–) 1/1 (100)
URL 18/25 (72) 19/39 (48) 349/573 (60)
UTF8 3/6 (50) 1/7 (14) 13/117 (11)
aAll percentages are truncated to integers by rounding down.

	Introduction
	Background
	Patch Theory
	Haskell's Type System

	Motivation
	Structure of this document

	Related Work
	Version Control Systems
	Commonly Supported Features
	Centralized and Decentralized Version Control

	Type Level Proofs
	Haskell
	Non-Haskell

	Data Model and Invariants
	Elements of Patch Theory
	Commute
	Example
	Abstract Interface

	Inverse Patches
	Equality
	Merge
	Summary

	Checked Invariants
	Sealed Types
	Witness Types
	Phantom Types
	Example
	Patch Representation
	Directed Types
	Directed Pairs
	Forward Lists

	Expressing Commutation
	Patch Sequences
	Patch Merge
	Patch Equality
	Summary

	Discussion
	Incremental Approach
	Difficulties
	Intentional Context Coercion
	Unsound Equality Examples
	Improving Context
	Type Checking

	Real-World Improvements
	Detection of Invalid Patch Sequence Manipulations
	Safe and General Functions
	Detection of Defective Functions
	Identification of Redundant Functions
	Writing New Code is Safer

	Conclusion
	Existentially Quantified Types
	Generalized Algebraic Data Types (GADTs)
	Directed Type Examples
	Functions
	Filtering
	Zipping
	Standard Operations

	Program Coverage

