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Main Darcs Challenges

Performance

Conflict handling

Darcs source is fragile

Summer of Code 2007
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Transparency * Robustness * Approachability

Darcs Source is Fragile

We would like to improve:

Transparency

Robustness

Approachability
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Transparency * Robustness * Approachability

Darcs Source is Fragile

Transparency means:

Is the source easy to understand?

Can you tell how darcs will behave?
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Transparency * Robustness * Approachability

Darcs Source is Fragile

Robustness means:

Reduced risk of regression

Can we refactor with confidence?
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Transparency * Robustness * Approachability

Darcs Source is Fragile

Approachability means:

Reduced learning curve for new devs

Source is self-documenting
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Darcs

Based on data model known as Patch Theory

Still a novel approach to VCS

Manages significant complexity

Provides relatively simple UI

Cherry picking

Automatic dependency calculation

Inspired several other VCS
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Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements
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Patch Theory

David Roundy developed Patch Theory

See http://darcs.net/manual/node9.html

Patches are similar to diffs, but also have an 
implicit dependency on context
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Invertible transformation of files and 
directories

Depends on more than repository state

Patch
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Sequences * Commutation * Context * Merge * Context Equality

Repository stores one sequence of patches

Patch sequence defines a transformation of 
repository state

Patch Sequences
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Sequences * Commutation * Context * Merge * Context Equality

Given two patches, A and B:
AB ↔ B1A1

Partial relation

Self-inverting:
If AB ↔ B1A1 then, B1A1 ↔ AB

Commute
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Sequences * Commutation * Context * Merge * Context Equality

Sequence of patches or any permutation of 
the sequence obtained by commutation.

Notation:
oAa, aAo, oAaBb = oABb, oABb ↔ oB1A1b

Patch Context

13
13Tuesday, October 14, 2008



Sequences * Commutation * Context * Merge * Context Equality

Given oAa, aBb, cA1b, oB1c then,
aAB1c ↔ aBA1c iff oB1A1b ↔ oABb.

Symmetric

Given oAa and oB1c:
oAAB1c ↔ oABA1c, discard A1
oB1B1Aa ↔ oB1A1Ba, discard B

Merge

o

a c
A B1

b
B A1
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Sequences * Commutation * Context * Merge * Context Equality

Given xA1y and uA2v, corresponding to same 
change*, if x = u or y = v then, A1 = A2.

Note: not true for arbitrary patches

 * A1 and A2 are related by commutation

Context Equality
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Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements
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Generalized Algebraic 
Data Types

Provide a uniform way to use:

Existential types

Phantom types

Witness types
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Sealed * EqCheck * Forward List

Sealed

data Sealed a where
   Sealed :: a x -> Sealed a

x is hidden

Unsealing gives fresh distinct type, or 
eigenvariable, instead of x
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Sealed * EqCheck * Forward List

EqCheck

Type equality witness

data EqCheck a b where
   IsEq :: EqCheck a a
   NotEq :: EqCheck a b

IsEq -- Proof that a = b

NotEq -- No new information about a and b
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Sealed * EqCheck * Forward List

Ordered Lists

data FL a x y where
  NilFL :: FL a x x
  (:>:) :: a x y -> FL a y z -> FL a x z

ord :: Char -> Int
chr :: Int -> Char

ord :>: chr :>: NilFL :: FL (->) Char Char
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Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements
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Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Add context to patches:

data Patch x y where
   Identity :: Patch x x
   FP :: FileName -> FilePatchType x y -> Patch x y
   ...
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Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Forward lists of patches:

p :>: q :>: NilFL :: FL Patch x z

Enforces ordering statically

Filter requires EqCheck

Not all list operations work on forward lists

No way to sort forward lists
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Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Original commute:
commute :: (Patch, Patch) -> Maybe (Patch, Patch)

New commute:
data (a1 :> a2) x y where
  (:>) :: a1 x z -> a2 z y -> (a1 :> a2) x y

commute :: (Patch :> Patch) x y -> Maybe ((Patch :> Patch) x y)
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Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Original merge
merge :: (Patch, Patch) -> Maybe (Patch, Patch)

New merge
data (a1 :/\: a2) where
  (:/\:) :: a1 x y -> a2 z y -> (a1 :/\: a2) x z

data (a1 :\/: a2) where
  (:\/:) :: a1 x y -> a2 x z -> (a1 :\/: a2) y z

merge :: (Patch :\/: Patch) a c
      -> Maybe ((Prim :/\: Prim) a c)
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o

a c
A B1

b
B A1

Recall:
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Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Only rarely required:

(=\/=) :: Patch a b -> Patch a c -> EqCheck b c

(=/\=) :: Patch a c -> Patch b c -> EqCheck a b

Lifting run-time check requires unsafeCoerce

Hard to avoid due to existential types
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data EqCheck a b where
   IsEq :: EqCheck a a
   NotEq :: EqCheck a b

Recall:
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Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements
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Darcs Defects Found

Example defects found by our type encoding:

Interactive changes

Removed rempatch and commute_by

Refactor of get_common_and_uncommon

Buggy handling of pending state

28
28Tuesday, October 14, 2008



Tricky Spots

Error messages

Inferred type is less polymorphic than 
expected

My brain just exploded

Wobbly types / Rigid type context
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Tricky Spots

Caution needed with (=\/=) and (=/\=) to 
avoid unsound definitions

EqCheck provides proof that a = b
data Patch a b = P

unsafeCoerce :: forall a b. a -> b
unsafeCoerce x = case a =\/= b of
                   IsEq -> x
                   NotEq -> error “impossible”
  where (a, b) = (P, P) :: (P () a, P () b)
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Transparency * Robustness * Approachability

Improved Source Code

How have the following changed?

Transparency

Robustness

Approachability
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Transparency * Robustness * Approachability

Improved Source Code

Is the source easy to understand?

Context-aware type signatures

Can you tell how darcs will behave?

Machine checkable documentation
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Transparency * Robustness * Approachability

Improved Source Code

Reduced risk of regression:

Type signatures act as a contract

Statically verified

We can refactor with confidence!
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Transparency * Robustness * Approachability

Improved Source Code

Reduced learning curve for new devs

Moved emphasis of understanding from 
Patch Theory to Haskell’s type system

Source is self-documenting

More type information means less guess 
work
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Future Work

Make Repository IO Monad context-aware

Similar to Monad Regions

Track context transformations

Restrict IO actions
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Conclusion

Static types let the compiler do the hard 
work

Refactoring is safer

Machine checkable documentation is good

Static analysis means no new run-time 
overhead
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Thank You!
Questions?

Jason Dagit
dagit@codersbase.com
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