
Type Correct Changes
A Safe Approach to Version Control Implementation

Jason Dagit
dagit@codersbase.com

1Tuesday, October 14, 2008

mailto:dagit@codersbase.com
mailto:dagit@codersbase.com

Main Darcs Challenges

Performance

Conflict handling

Darcs source is fragile

Summer of Code 2007

2Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Darcs Source is Fragile

We would like to improve:

Transparency

Robustness

Approachability

3
3Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Darcs Source is Fragile

Transparency means:

Is the source easy to understand?

Can you tell how darcs will behave?

4
4Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Darcs Source is Fragile

Robustness means:

Reduced risk of regression

Can we refactor with confidence?

5
5Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Darcs Source is Fragile

Approachability means:

Reduced learning curve for new devs

Source is self-documenting

6
6Tuesday, October 14, 2008

Darcs

Based on data model known as Patch Theory

Still a novel approach to VCS

Manages significant complexity

Provides relatively simple UI

Cherry picking

Automatic dependency calculation

Inspired several other VCS

7
7Tuesday, October 14, 2008

Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements

8Tuesday, October 14, 2008

Patch Theory

David Roundy developed Patch Theory

See http://darcs.net/manual/node9.html

Patches are similar to diffs, but also have an
implicit dependency on context

9Tuesday, October 14, 2008

http://darcs.net/manual/node9.html
http://darcs.net/manual/node9.html

Invertible transformation of files and
directories

Depends on more than repository state

Patch

10
10Tuesday, October 14, 2008

Sequences * Commutation * Context * Merge * Context Equality

Repository stores one sequence of patches

Patch sequence defines a transformation of
repository state

Patch Sequences

11
11Tuesday, October 14, 2008

Sequences * Commutation * Context * Merge * Context Equality

Given two patches, A and B:
AB ↔ B1A1

Partial relation

Self-inverting:
If AB ↔ B1A1 then, B1A1 ↔ AB

Commute

12
12Tuesday, October 14, 2008

Sequences * Commutation * Context * Merge * Context Equality

Sequence of patches or any permutation of
the sequence obtained by commutation.

Notation:
oAa, aAo, oAaBb = oABb, oABb ↔ oB1A1b

Patch Context

13
13Tuesday, October 14, 2008

Sequences * Commutation * Context * Merge * Context Equality

Given oAa, aBb, cA1b, oB1c then,
aAB1c ↔ aBA1c iff oB1A1b ↔ oABb.

Symmetric

Given oAa and oB1c:
oAAB1c ↔ oABA1c, discard A1
oB1B1Aa ↔ oB1A1Ba, discard B

Merge

o

a c
A B1

b
B A1

14
14Tuesday, October 14, 2008

Sequences * Commutation * Context * Merge * Context Equality

Given xA1y and uA2v, corresponding to same
change*, if x = u or y = v then, A1 = A2.

Note: not true for arbitrary patches

 * A1 and A2 are related by commutation

Context Equality

15
15Tuesday, October 14, 2008

Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements

16Tuesday, October 14, 2008

Generalized Algebraic
Data Types

Provide a uniform way to use:

Existential types

Phantom types

Witness types

17
17Tuesday, October 14, 2008

Sealed * EqCheck * Forward List

Sealed

data Sealed a where
 Sealed :: a x -> Sealed a

x is hidden

Unsealing gives fresh distinct type, or
eigenvariable, instead of x

18
18Tuesday, October 14, 2008

Sealed * EqCheck * Forward List

EqCheck

Type equality witness

data EqCheck a b where
 IsEq :: EqCheck a a
 NotEq :: EqCheck a b

IsEq -- Proof that a = b

NotEq -- No new information about a and b

19
19Tuesday, October 14, 2008

Sealed * EqCheck * Forward List

Ordered Lists

data FL a x y where
 NilFL :: FL a x x
 (:>:) :: a x y -> FL a y z -> FL a x z

ord :: Char -> Int
chr :: Int -> Char

ord :>: chr :>: NilFL :: FL (->) Char Char

20
20Tuesday, October 14, 2008

Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements

21Tuesday, October 14, 2008

Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Add context to patches:

data Patch x y where
 Identity :: Patch x x
 FP :: FileName -> FilePatchType x y -> Patch x y
 ...

22
22Tuesday, October 14, 2008

Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Forward lists of patches:

p :>: q :>: NilFL :: FL Patch x z

Enforces ordering statically

Filter requires EqCheck

Not all list operations work on forward lists

No way to sort forward lists

23
23Tuesday, October 14, 2008

Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Original commute:
commute :: (Patch, Patch) -> Maybe (Patch, Patch)

New commute:
data (a1 :> a2) x y where
 (:>) :: a1 x z -> a2 z y -> (a1 :> a2) x y

commute :: (Patch :> Patch) x y -> Maybe ((Patch :> Patch) x y)

24
24Tuesday, October 14, 2008

Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Original merge
merge :: (Patch, Patch) -> Maybe (Patch, Patch)

New merge
data (a1 :/\: a2) where
 (:/\:) :: a1 x y -> a2 z y -> (a1 :/\: a2) x z

data (a1 :\/: a2) where
 (:\/:) :: a1 x y -> a2 x z -> (a1 :\/: a2) y z

merge :: (Patch :\/: Patch) a c
 -> Maybe ((Prim :/\: Prim) a c)

25

o

a c
A B1

b
B A1

Recall:

25Tuesday, October 14, 2008

Context * Sequences * Commutation * Merge * Context Equality

Type Encoding

Only rarely required:

(=\/=) :: Patch a b -> Patch a c -> EqCheck b c

(=/\=) :: Patch a c -> Patch b c -> EqCheck a b

Lifting run-time check requires unsafeCoerce

Hard to avoid due to existential types

26

data EqCheck a b where
 IsEq :: EqCheck a a
 NotEq :: EqCheck a b

Recall:

26Tuesday, October 14, 2008

Outline

Theory: Patches

Tools: GADTs

Solution: Type encoding

Evaluation: Darcs source improvements

27Tuesday, October 14, 2008

Darcs Defects Found

Example defects found by our type encoding:

Interactive changes

Removed rempatch and commute_by

Refactor of get_common_and_uncommon

Buggy handling of pending state

28
28Tuesday, October 14, 2008

Tricky Spots

Error messages

Inferred type is less polymorphic than
expected

My brain just exploded

Wobbly types / Rigid type context

29
29Tuesday, October 14, 2008

Tricky Spots

Caution needed with (=\/=) and (=/\=) to
avoid unsound definitions

EqCheck provides proof that a = b
data Patch a b = P

unsafeCoerce :: forall a b. a -> b
unsafeCoerce x = case a =\/= b of
 IsEq -> x
 NotEq -> error “impossible”
 where (a, b) = (P, P) :: (P () a, P () b)

30
30Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Improved Source Code

How have the following changed?

Transparency

Robustness

Approachability

31
31Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Improved Source Code

Is the source easy to understand?

Context-aware type signatures

Can you tell how darcs will behave?

Machine checkable documentation

32
32Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Improved Source Code

Reduced risk of regression:

Type signatures act as a contract

Statically verified

We can refactor with confidence!

33
33Tuesday, October 14, 2008

Transparency * Robustness * Approachability

Improved Source Code

Reduced learning curve for new devs

Moved emphasis of understanding from
Patch Theory to Haskell’s type system

Source is self-documenting

More type information means less guess
work

34
34Tuesday, October 14, 2008

Future Work

Make Repository IO Monad context-aware

Similar to Monad Regions

Track context transformations

Restrict IO actions

35Tuesday, October 14, 2008

Conclusion

Static types let the compiler do the hard
work

Refactoring is safer

Machine checkable documentation is good

Static analysis means no new run-time
overhead

36
36Tuesday, October 14, 2008

Thank You!
Questions?

Jason Dagit
dagit@codersbase.com

37Tuesday, October 14, 2008

mailto:dagit@codersbase.com
mailto:dagit@codersbase.com

