Type Correct Changes

A Safe Approach to Version Control Implementation

Jason Dagit
dagit@codersbase.com

Tuesday, October 14, 2008


mailto:dagit@codersbase.com
mailto:dagit@codersbase.com

Main Darcs Challenges

@ Performance
@ Conflict handling < Summer of Code 2007

@ Darcs source is fragile

Tuesday, October 14, 2008



Darcs Source Is Fragile

@ We would like to improve:
@ Transparency
@ Robustness

@ Approachability

Transparency * Robustness * Approachability

3

Tuesday, October 14, 2008



Darcs Source Is Fragile

@ Transparency means:
@ Is the source easy to understand?

@ Can you tell how darcs will behave?

Transparency * Robustness * Approachability

A

Tuesday, October 14, 2008



Darcs Source Is Fragile

@ Robustness means:
® Reduced risk of regression

® Can we refactor with confidence?

Transparency * Robustness * Approachability

5

Tuesday, October 14, 2008



Darcs Source Is Fragile

@ Approachability means:
@ Reduced learning curve for new devs

@ Source is self-documenting

Transparency * Robustness * Approachability

6

Tuesday, October 14, 2008



Darcs

@ Based on data model known as Patch Theory

o Still a novel approach to VCS

@ Manages significant complexity

@ Provides relatively simple UI

@ Cherry picking

@ Automatic dependency calculation

@ Inspired several other VCS

v

Tuesday, October 14, 2008 7



Outline

@ Theory: Patches
@ Tools: GADTs
@ Solution: Type encoding

@ Evaluation: Darcs source improvements

Tuesday, October 14, 2008



Patch Theory

@ David Roundy developed Patch Theory

@ See http://darcs.net/manual/node9.html

@ Patches are similar to diffs, but also have an
implicit dependency on context

Tuesday, October 14, 2008


http://darcs.net/manual/node9.html
http://darcs.net/manual/node9.html

Patch

® Invertible transformation of files and
directories

@ Depends on more than repository state

10

Tuesday, October 14, 2008



Patch Sequences

@ Repository stores one sequence of patches

@ Patch sequence defines a transformation of
repository state

Sequences * Commutation * Context * Merge * Context Equality

11

Tuesday, October 14, 2008



Commute

@ Given two patches, A and B:
AB < BiAi
@ Partial relation

@ Self-inverting:
If AB < BijA; then, BiA; < AB

Sequences * Commutation * Context * Merge * Context Equality

12

Tuesday, October 14, 2008



Patch Context

@ Sequence of patches or any permutation of
the sequence obtained by commutation.

@ Notation:
oAa' aéo' oAaBb b oABb, oABb M OBlAlb

Sequences * Commutation * Context * Merge * Context Equality

13

Tuesday, October 14, 2008



Merge

@ Given °A¢, 9BP, A;°, °B:¢ then,
IAB¢ — IBA;C iff °B1A® < °ABP.

@ Symmedtric

b
0y
@ Given °A% and °B;¢:

a C
'AAB ¢ — °ABA:S, discard A /‘
°B1B1A° < °B1AB?, discard B p\o B

Sequences * Commutation * Context * Merge * Context Equality

14

Tuesday, October 14, 2008



Context Equality

@ Given *AyY and “AyY, corresponding to same
change*, if x = uor y = v then, A1 = Ao.

@ Note: not true for arbitrary patches

* Ay and A; are related by commutation

Sequences * Commutation * Context * Merge * Context Equality

15

Tuesday, October 14, 2008



Outline

@ Theory: Patches
@ Tools: GADTs
@ Solution: Type encoding

@ Evaluation: Darcs source improvements

Tuesday, October 14, 2008



Generalized Algebraic
Data Types

@ Provide a uniform way to use:
@ Existential types
@ Phantom types
@ Witness types

17




Sealed

data Sealed a where
Sealed :: a x -> Sealed a

@ X is hidden

@ Unsealing gives fresh distinct type, or
eigenvariable, instead of x

Sealed * EqCheck * Forward List

18

Tuesday, October 14, 2008



EqCheck

@ Type equality witness
data EgqCheck a b where

Iskqg :: EgCheck a a
NotEq :: EgCheck a b

@ IskEq -- Proof that a = b

@ NotEq -- No new information about a and b

Sealed * EqCheck * Forward List

19

Tuesday, October 14, 2008



Ordered Lists

data FL a x y where
N1lFL 2:=8Bl "a X X
(i>)tra xy = FLayz—>FEG%x z

ord :: Char -> Int
chr :: Int -> Char

ord :>: chr :>: NilFL :: FL (->) Char Char

Sealed * EqCheck * Forward List

20

Tuesday, October 14, 2008



Outline

@ Theory: Patches
@ Tools: GADTSs
@ Solution: Type encoding

@ Evaluation: Darcs source improvements

Tuesday, October 14, 2008



Type Encoding

@ Add context to patches:

data Patch x y where
Identity :: Patch x x
FP :: FileName -> FilePatchType x y -> Patch x y

Context * Sequences * Commutation * Merge * Context Equality

22

Tuesday, October 14, 2008



Type Encoding

@ Forward lists of patches:

p :>: q :>: NilFL :: FL Patch x z
@ Enforces ordering statically
@ Filter requires EqCheck
@ Not all list operations work on forward lists

@ No way to sort forward lists

Context * Sequences * Commutation * Merge * Context Equality

23

Tuesday, October 14, 2008



Type Encoding

@ Original commute:
commute :: (Patch, Patch) -> Maybe (Patch, Patch)

® New commute:

data (al :> aZ2) x y where
(:>) ::alxz->a2zy ->(l :>a2) xy

commute :: (Patch :> Patch) x y -> Maybe ((Patch :> Patch) x y)

Context * Sequences * Commutation * Merge * Context Equality

24

Tuesday, October 14, 2008



Recall:

Type Encoding

@ Original merge
merge :: (Patch, Patch) -> Maybe (Patch, Patch)

@ New merge
data (al :/\: aZ) where
(:/\:) 1 al xy ->a2zy -> (al :/\: a2) x z

data (al :\/: a2) where
(:\/:) ::alxy >a2xz ->(Cl :\/: a2)y z

merge :: (Patch :\/: Patch) a c
-> Maybe ((Prim :/\: Prim) a c)

Context * Sequences * Commutation * Merge * Context Equality

25

Tuesday, October 14, 2008




Type Encoding

Recall:

@ Only rarely required:

(=\/=) :: Patch a b -> Patch a c -> EgCheck b c

(=/\=) :: Patch a ¢ -> Patch b ¢ -> EqCheck a b

% LiFfing run-time check requires unsafeCoerce

@ Hard to avoid due to existential types

Context * Sequences * Commutation * Merge * Context Equality

26

Tuesday, October 14, 2008



Outline

@ Theory: Patches
@ Tools: GADTs
@ Solution: Type encoding

@ Evaluation: Darcs source improvements

Tuesday, October 14, 2008



Darcs Defects Found

@ Example defects found by our type encoding:
@ Interactive changes

® Removed rempatch and commute_by
@ Refactor of get_common_and_uncommon

@ Buggy handling of pending state

28

Tuesday, October 14, 2008




Tricky Spots

@ Error messages

@ Inferred type is less polymorphic than
expected

@ My brain just exploded

@ Wobbly types / Rigid type context

29

Tuesday, October 14, 2008



Tricky Spots

® Caution needed with (=\/=) and (=/\=) to
avoid unsound definitions

@ EqCheck provides proof that a = b
data Patch a b = P

unsafeCoerce :: forall a b. a -> b
unsafeCoerce x = case a =\/= b of
IsEg -> X

NotEg -> error “impossible”
where (a, b) = (P, P) :: (P O a, P (O b)

30

Tuesday, October 14, 2008



Improved Source Code

@ How have the following changed?
@ Transparency
@ Robustness

@ Approachability

Transparency * Robustness * Approachability

31

Tuesday, October 14, 2008



Improved Source Code

@ Is the source easy to understand?
@ Context-aware type signatures
@ Can you tell how darcs will behave?

® Machine checkable documentation

Transparency * Robustness * Approachability

32

Tuesday, October 14, 2008



Improved Source Code

@ Reduced risk of regression:
@ Type signatures act as a contract
@ Statically verified

® We can refactor with confidence!

Transparency * Robustness * Approachability

33

Tuesday, October 14, 2008



Improved Source Code

@ Reduced learning curve for new devs

@ Moved emphasis of understanding from
Patch Theory to Haskells type system

@ Source is self-documenting

® More type information means less gquess
work

Transparency * Robustness * Approachability

34

Tuesday, October 14, 2008



Future Work

@ Make Repository I0 Monad context-aware
@ Similar to Monad Regions
@ Track context transformations

® Restrict I0 actions

Tuesday, October 14, 2008



Conclusion

@ Static types let the compiler do the hard
work

@ Refactoring is safer
@ Machine checkable documentation is good

@ Static analysis means no new run-time
overhead

36

Tuesday, October 14, 2008



Thank You!
Questions?

Jason Dagit
dagit@codersbase.com



mailto:dagit@codersbase.com
mailto:dagit@codersbase.com

